Skip to main content
Log in

Nonautonomous lump waves of a (3+1)-dimensional Kudryashov–Sinelshchikov equation with variable coefficients in bubbly liquids

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we study the (3+1)-dimensional variable-coefficient Kudryashov–Sinelshchikov (vc-KS) equation, which characterizes the evolution of nonautonomous nonlinear waves in bubbly liquids. The nonautonomous lump solutions of the vc-KS equation are produced via the Hirota bilinear technique. The characteristics of trajectory and velocity of this wave are analyzed with variable dispersion coefficients. Based on the positive quadratic function assumption, we further discuss two types of interactions between the soliton and lump under the periodic and exponential modulations. Then, we give the breathing lump waves showing the periodic oscillation behavior. Finally, we obtain the second-order nonautonomous lump solution, which also shows periodic interactions if we select trigonometric functions as the dispersion coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang, J.Y., Ma, W.X.: Lump solutions to the BKP equation by symbolic computation. Int. J. Mod. Phys. B 30, 1640028 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Manafian, J., Lakestani, M.: Lump-type solutions and interaction phenomenon to the bidirectional Sawada–Kotera equation. Praman 92, 3 (2019)

    Article  Google Scholar 

  3. Lester, C., Gelash, A., Zakharov, D., et al.: Lump chains in the KP-I equation. arXiv:2102.07038 (2021)

  4. Deng, Z.H., Chang, X., Tan, J.N., et al.: Characteristics of the lumps and stripe solitons with interaction phenomena in the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation. Int. J. Theor. Phys. 58, 92 (2019)

    Article  MATH  Google Scholar 

  5. Falcon, E., Laroche, C., Fauve, S.: Observation of depression solitary surface waves on a thin fluid layer. Phys. Rev. Lett. 89, 204501 (2002)

    Article  Google Scholar 

  6. Deng, Z.H., Wu, T., Tang, B., et al.: Breathers and rogue waves in a ferromagnetic thin film with the Dzyaloshinskii–Moriya interaction. Eur. Phys. J. Plus 133, 450 (2018)

    Article  Google Scholar 

  7. Pelinovsky, D.E., Stepanyants, Y.A., Kivshar, Y.S.: Selffocusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 51, 5016 (1995)

    Article  MathSciNet  Google Scholar 

  8. Wazwaz, A.M.: A two-mode modified KdV equation with multiple soliton solutions. Appl. Math. Lett. 70, 1 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Wazwaz, A.M.: Abundant solutions of various physical features for the (2+1)-dimensional modified KdV–Calogero–Bogoyavlenskii–Schiff equation. Nonlinear Dyn. 89, 1727 (2017)

    Article  MathSciNet  Google Scholar 

  10. Wazwaz, A.M.: Multiple soliton solutions and other exact solutions for a two-mode KdV equation. Math. Methods Appl. Sci. 40, 2277 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirotas method. Nonlinear Dyn. 88, 3017 (2017)

    Article  MathSciNet  Google Scholar 

  13. Wazwaz, A.M.: A study on a two-wave mode Kadomtsev–Petviashvili equation: conditions for multiple soliton solutions to exist. Math. Methods Appl. Sci. 40, 4128 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733 (2020)

    Article  Google Scholar 

  15. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102, 379 (2020)

    Article  Google Scholar 

  16. Fang, J.J., Dai, C.Q.: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation. Optik 209, 164574 (2020)

    Article  Google Scholar 

  17. Wang, B.H., Wang, Y.Y., Dai, C.Q., Chen, Y.X.: Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas–Lenells equation. Alex. Eng. J. 59, 4699 (2020)

    Article  Google Scholar 

  18. Fang, J.J., Mou, D.S., Wang, Y.Y., Zhang, H.C., Dai, C.Q., Chen, Y.X.: Soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation. Res. Phys. 20, 103710 (2021)

    Google Scholar 

  19. Li, P.F., Li, R.J., Dai, C.Q.: Existence, symmetry breaking bifurcation and stability of two-dimensional optical solitons supported by fractional diffraction. Opt. Express 29, 3193 (2021)

    Article  Google Scholar 

  20. Zhou, A.J., Chen, A.H.: Exact solutions of the Kudryashov–Sinelshchikov equation in ideal liquid with gas bubbles. Phys. Scr. 93, 125201 (2018)

    Article  Google Scholar 

  21. Lü, J., Bilige, S., Chaolu, T.: The study of lump solution and interaction phenomenon to (2+1)-dimensional generalized fifth-order KdV equation. Nonlinear Dyn. 91, 1669 (2018)

    Article  Google Scholar 

  22. Wang, C.J.: Lump solution and integrability for the associated Hirota bilinear equation. Nonlinear Dyn. 87, 2635 (2017)

    Article  MathSciNet  Google Scholar 

  23. Osman, M.S., Machado, J.A.T.: New nonautonomous combined multi-wave solutions for (2+1)-dimensional variable coefficients KdV equation. Nonlinear Dyn. 93, 733 (2018)

    Article  MATH  Google Scholar 

  24. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang, Y.N., Tao, S.Q., Zhou, M.L., Guan, Q.: Interaction solutions between lump and other solitons of two classes of nonlinear evolution equations. Nonlinear Dyn. 89, 1 (2017)

    Article  MathSciNet  Google Scholar 

  26. Zhang, Y., Sun, Y.B., Xiang, W.: The rogue waves of the KP equation with self-consistent sources. Appl. Math. Comput. 263, 204 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced -gKP and -gBKP equations. Nonlinear Dyn. 84, 923 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tan, W., Dai, Z.D.: Spatiotemporal dynamics of lump solution to the (1+1)-dimensional Benjamin-Ono equation. Nonlinear Dyn. 89, 2723 (2017)

    Article  MathSciNet  Google Scholar 

  30. Guo, B.L., Ling, L.M., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  31. Tan, W., Dai, Z.D.: Dynamics of kinky wave for (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation. Nonlinear Dyn. 85, 817 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang, J.Y., Ma, W.X.: Abundant lump-type solutions of the Jimbo–Miwa equationin(3+1)-dimensions. Comput. Math. Appl. 73, 220 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, C.J., Fang, H., Tang, X.X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 95, 2943 (2019)

    Article  MATH  Google Scholar 

  34. Zhang, H.S., Wang, L., Sun, W.R., Xu, T.: Mechanisms of stationary converted waves and their complexes in the multi-component AB system. Physica D 419, 132849 (2021)

    Article  MathSciNet  Google Scholar 

  35. Zhang, X., Wang, L., Liu, C., et al.: High-dimensional nonlinear wave transitions and their mechanisms. Chaos 30, 113107 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Gao, X.Y.: Density-fluctuation symbolic computation on the (3+1)-dimensional variable-coefficient Kudryashov–Sinelshchikov equation for a bubbly liquid with experimental support. Mod. Phys. Lett. B 30, 1650217 (2016)

    Article  MathSciNet  Google Scholar 

  37. Baronio, F., Degasperis, A., Conforti, M., Wabnitz, S.: Solutions of the Vector Nonlinear Schrödinger Equations: Evidence for Deterministic Rogue Waves. Phys. Rev. Lett. 109, 044102 (2012)

    Article  Google Scholar 

  38. Lü, X., Peng, M.: Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells–Fokas model. Chaos 23, 013122 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lü, X., Li, J., Zhang, H.Q., Xu, T., Li, L.L., Tian, B.: Integrability aspects with optical solitons of a generalized variable-coefficient \(N\)-coupled higher order nonlinear Schrödinger system from inhomogeneous optical fibers. J. Math. Phys. 51, 043511 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhong, W.P., Belić, M., Malomed, B.A., Huang, T.W.: Breather management in the derivative nonlinear Schrödinger equation with variable coefficients. Ann. Phys. 355, 313 (2015)

    Article  MATH  Google Scholar 

  41. Yang, Z.P., Zhong, W.P., Belić, M.R.: Breather solutions to the nonlinear Schrödinger equation with variable coefficients and a linear potential. Phys. Scr. 86, 015402 (2012)

    Article  MATH  Google Scholar 

  42. Zhong, W.P., Belić, M.R., Huang, T.W.: Rogue wave solutions to the generalized nonlinear Schrödinger equation with variable coefficients. Phys. Rev. E 87, 065201 (2013)

    Article  Google Scholar 

  43. Zhong, W.P., Belić, M.R., Zhang, Y.Q.: Second-order rogue wave breathers in the nonlinear Schrödinger equation with quadratic potential modulated by a spatially-varying diffraction coefficient. Opt. Express 23, 3708 (2015)

    Article  Google Scholar 

  44. Zhong, W.P., Chen, L., Belić, M.R., Petrović, N.: Controllable parabolic-cylinder optical rogue wave. Phys. Rev. E 90, 043201 (2014)

    Article  Google Scholar 

  45. Zhong, W.P., Nonlin, J.: Rogue wave solutions of the generalized one-dimensional gross-pitaevskii equation. Opt. Phys. Mater. 21, 1250026 (2012)

    Article  Google Scholar 

  46. Zhong, W.P., Belić, M.R.: Breather solutions of the generalized nonlinear Schrödinger equation with spatially modulated parameters and a special external potential. Eur. Phys. J. Plus 129, 234 (2014)

    Article  Google Scholar 

  47. Zhong, W.P., Belić, M.R., Huang, T.W.: Periodic soliton solutions of the nonlinear Schrödinger equation with variable nonlinearity and external parabolic potential. Optik 124, 2397 (2013)

    Article  Google Scholar 

  48. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. Lett. 90, 113902 (2003)

    Article  Google Scholar 

  49. Kruglov, V.I., Peacock, A.C., Harvey, J.D.: Exact solutions of the generalized nonlinear Schrödinger equation with distributed coefficients. Phys. Rev. E 71, 056619 (2005)

    Article  MathSciNet  Google Scholar 

  50. Peacocka, A.C., Kruhlaka, R.J., Harveya, J.D., Dudley, J.M.: Solitary pulse propagation in high gain optical fiber amplifiers with normal group velocity dispersion. Opt. Commun. 206, 171 (2002)

  51. Wang, L., Zhang, J.H., Liu, C., Li, M., Qi, F.H.: Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects. Phys. Rev. E 93, 062217 (2016)

  52. Wang, L., Zhu, J.Y., Qi, F.H., Li, M., Guo, R.: Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Chaos 25, 063111 (2015)

    Article  MathSciNet  Google Scholar 

  53. Wang, L., Li, X., Qi, F.H., Zhang, L.L.: Breather interactions and higher-order nonautonomous rogue waves for the inhomogeneous nonlinear Schrödinger Maxwell-Bloch equations. Ann. Phys. 359, 97 (2015)

    Article  MATH  Google Scholar 

  54. Wang, L., Li, M.: Nonautonomous characteristics of the breathers and rogue waves for a amplifier nonlinear Schrödinger Maxwell-Bloch system. Eur. Phys. J. D 69, 214 (2015)

    Article  Google Scholar 

  55. Kudryashov, N.A., Sinelshchikov, D.I.: Equation for the three-dimensional nonlinear waves in liquid with gas bubbles. Phys. Scr. 85, 025402 (2012)

    Article  MATH  Google Scholar 

  56. Ma, W.X.: Lump-type solutions to the (3+1)-dimensional Jimbo–Miwa equation. Int. J. Nonlin. Sci. Num. 17, 355 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hirota, R.: The Direct Method in Soliton Theroy. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  58. Ablowitz, M.J., Satsuma, J.: Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2108 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  59. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20, 1496 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Zhengran Hu and Feifan Wang are co-first authors. We express our sincere thanks to all members of our discussion group for their valuable comments. The authors would like to thank Prof. L. W. for his suggestions on the topic, structure and analysis. This work has been supported by the Natural Science Foundation of Beijing Municipality under Grant No. 1212007, the Fundamental Research Funds for the Central Universities under No. 2020MS043, the Special Funds for the Local Science and Technology Development of the Central Government under Grant No. 2020ZY0014 and the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant No. NJYT-19-B21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengran Hu.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Wang, F., Zhao, Y. et al. Nonautonomous lump waves of a (3+1)-dimensional Kudryashov–Sinelshchikov equation with variable coefficients in bubbly liquids. Nonlinear Dyn 104, 4367–4378 (2021). https://doi.org/10.1007/s11071-021-06570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06570-5

Keywords

Navigation