Skip to main content
Log in

Freeze-casting porous PTFE foam via constant temperature cold source

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

Porous PTFE foam with unique microstructure fabricated by freeze-casting may provide many potential applications in various fields. In this report, freeze-casting was applied to manufacture porous PTFE foam. The microstructure of the green bodies affected by the freezing temperature, PVA concentration and PTFE concentration was investigated. SEM, the actual temperature change curve, Low-temperature DSC and viscosity were characterized to investigate the microstructure forming process. The green bodies formed in freeze-casting were found bimodal in pore distribution. The underlying mechanism was further discussed by Oswald ripening which may be caused by long crystallization time. Cavities were also formed on the pore walls of the green bodies. That may be caused by PVA gelation during the growth of ice crystals. The orientated pore can be observed in the green bodies clearly. However, the pore orientations become less regular as the number of loaded particles being reduced. The explanation for this is that longer crystallization time may also lead to parts of crystallization occurring far from the original generated ice-front. Undergoing sintering process, the microstructure of the sintered sample had an incredible transformation from green body. Louvered shape of the pore wall with worm-like pore arms appeared, and pore shapes were transformed from oval to polygon. We present the schematic of the microstructure evolution of PTFE foam also.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data and material are available.

Code availability

Not applicable.

References

  1. P. Arora, Z.M. Zhang, Chem Rev 104, 4419 (2004)

    Article  CAS  Google Scholar 

  2. A.I. Cassady, N.M. Hidzir, L. Grondahl, J Appl Polym Sci 131, 40533 (2014)

    Article  Google Scholar 

  3. E.S. Collins, B.R. Skelton, M.L. Pantoya, F. Irin, M.J. Green, M.A. Daniels, Combustion Flame 162, 1417 (2015)

    Article  CAS  Google Scholar 

  4. Q. Yang, Z.K. Xu, Z.W. Dai, J.L. Wang, M. Ulbricht, Chem Mater 17, 3050 (2005)

    Article  CAS  Google Scholar 

  5. J. Yin, B.L. Deng, Membrane Sci 479, 256 (2015)

    Article  CAS  Google Scholar 

  6. K. Kawakami, Y. Moriyama Y. JP4008665-A (1979).

  7. K. Kawakami, Y. Moriyama Y. JP54061262-A (1979).

  8. Q.F. Cheng, C.J. Huang, A.P. Tomsia, Adv Mater 29, 1703155 (2017)

    Article  Google Scholar 

  9. S. Deville, Materials 3, 1913 (2010)

    Article  CAS  Google Scholar 

  10. S. Deville, Mater Res 28, 2202 (2013)

    Article  CAS  Google Scholar 

  11. S. Deville, S. Meille, J. Seuba, J Sci Technol Adv Mat 16, 043501 (2015)

  12. S. Deville, E. Saiz, R.K. Nalla, A.P. Tomsia, Science 311, 515 (2006)

    Article  CAS  Google Scholar 

  13. C. Gaudillere, J. Manuel Serra, J Bol Soc Esp Ceram V 55, 45 (2016)

  14. W.L. Li, K. Lu, J.Y. Walz, Int Mater Rev 57, 37 (2012)

    Article  CAS  Google Scholar 

  15. G. Liu, Y. Yan, J Inorg Mater 29, 571 (2014)

    CAS  Google Scholar 

  16. R.P. Liu, T.T. Xu, C.A. Wang, Ceram Int 42, 2907 (2016)

    Article  CAS  Google Scholar 

  17. I. Nelson, S.E. Naleway, J Mater Res Technol 8, 2372 (2019)

    Article  Google Scholar 

  18. K.L. Scotti, D.C. Dunand, Prog Mater Sci 94, 243 (2018)

    Article  CAS  Google Scholar 

  19. J. Banhart, Prog Mater Sci 46, 559 (2001)

    Article  CAS  Google Scholar 

  20. S.V. Madihally, H.W.T. Matthew, Biomaterials 20, 1133 (1999)

    Article  CAS  Google Scholar 

  21. H.X. Peng, Z. Fan, J.R.G. Evans, J.J.C. Busfield, J Eur Ceram Soc 20, 807 (2000)

    Article  CAS  Google Scholar 

  22. P. Sepulveda, J.G.P. Binner, J Eur Ceram Soc 19, 2059 (1999)

    Article  CAS  Google Scholar 

  23. U.G.K. Wegst, M. Schecter, A.E. Donius, P.M. Hunger, Philos T R Soc A 368, 2099 (2010)

    Article  CAS  Google Scholar 

  24. X.G. Liu, W.D. Xue, C.L. Shi, J.L. Sun, Ceram Int 41, 11922 (2015)

    Article  CAS  Google Scholar 

  25. L. Li, Q. Li, J. Hong, M. Sun, J. Zhang, S.M. Dong, J Alloys Compd 732, 136 (2018)

    Article  CAS  Google Scholar 

  26. X.Q. Li, D.X. Yao, K.H. Zuo, J.W. Xia, H.Q. Liang, Y.P. Zeng, J Eur Ceram Soc 39, 2855 (2019)

    Article  CAS  Google Scholar 

  27. A. Lasalle, C. Guizard, J. Lepoup, S. Deville, E. Maire, A. Bogner, C. Gauthier et al., J Am Ceram Soc 95, 799 (2012)

    Article  CAS  Google Scholar 

  28. K. Zhao, Y.F. Tang, Y.S. Qin, J.Q. Wei, Ceram Int 37, 635 (2011)

    Article  CAS  Google Scholar 

  29. L.Y. Bai, Y.G. Ouyang, J. Song, Z. Xu, W.F. Liu, J.Y. Hu, Y.L. Wang, F.L. Yuan, Mater 12, 1497 (2019)

    Article  CAS  Google Scholar 

  30. S. Hu, X. Wang, Sci China Chem 55, 2257 (2012)

    Article  CAS  Google Scholar 

  31. A.L. Rogach, T. Franzl, T.A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Shavel et al., J Phys Chem C 111, 14628 (2007)

    Article  CAS  Google Scholar 

  32. H. Kumano, T. Hirata, S. Takeda, T. Kudoh, Int J Refrig 34, 1999 (2011)

    Article  CAS  Google Scholar 

  33. C. Pekor, B. Groth, I. Nettleship, J Am Ceram Soc 93, 115 (2010)

    Article  CAS  Google Scholar 

  34. S. Deville, E. Maire, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup, C. Guizard, J Am Ceram Soc 93, 2507 (2010)

    Article  CAS  Google Scholar 

  35. A. Preiss, B. Su, S. Collins, D. Simpson, J Eur Ceram Soc 32, 1575 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of P.R.China (Grant No.50473050), and the Application and Basic Research Foundation of Sichuan Province (Grant No.2010JY0015).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Xiaoming Guo, Yongyi Yao, Puxin Zhu, Mi Zhou, Tao Zhou. The first draft of the manuscript was written by Xiaoming Guo and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yongyi Yao or Puxin Zhu.

Ethics declarations

Conflict of interest

The authors declare there is no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1350 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yao, Y., Zhu, P. et al. Freeze-casting porous PTFE foam via constant temperature cold source. J Porous Mater 28, 1523–1533 (2021). https://doi.org/10.1007/s10934-021-01090-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01090-4

Keywords

Navigation