Skip to main content
Log in

One-Pot Reaction of Waste PET to Flame Retardant Polyurethane Foam, via Deep Eutectic Solvents-Based Conversion Technology

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Depolymerization of polyethylene terephthalate (PET) is a promising technology for producing recycled monomers. Using a deep eutectic solvent (DES)-based catalyst, the PET glycolysis process produces bis-(2-hydroxyethylene terephthalate) (BHET). This recycled monomer reacts with isocyanate and forms polyurethane foam (PUF). The DES-based one-pot reaction is advantageous because it is a low-energy process that requires relatively lower temperatures and reduced reaction times. In this study, choline chloride/urea, zinc chloride/urea, and zinc acetate/urea based DESs were adopted as DES catalysts for glycolysis. Subsequently, the conversion of PET, BHET yield, and OH values were evaluated. Both filtered and unfiltered reaction mixtures were used as polyols for PUF polymerization after characterization of the acid and hydroxyl values of the polyols, as well as the NCO (–N=C=O) value of isocyanate. In the case of unfiltered reaction mixtures, PUF was obtained via a one-pot reaction, which exhibited higher thermal stability than PUF made from the filtered polyols. This outcome indicated that oligomeric BHET containing many aromatic moieties in unfiltered polyols contributes to the thermal stability of PUF. This environmentally friendly and relatively simple process is an economical approach for upcycling waste PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed are available from the corresponding author upon reasonable request.

References

  1. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511

    Article  CAS  Google Scholar 

  2. Keijer T, Bakker V, Slootweg JC (2019) Circular chemistry to enable a circular economy. Nat Chem 11:190–195

    Article  CAS  Google Scholar 

  3. Shojaei B, Abtahi M, Najafi M (2020) Chemical recycling of PET: a stepping-stone toward sustainability. Polym Adv Technol 31:2912–2938

    Article  CAS  Google Scholar 

  4. Kárpáti L, Fogarassy F, Kovácsik D, Vargha V (2019) One-pot depolymerization and polycondensation of pet based random oligo- and polyesters. J Polym Environ 27:2167–2181

    Article  Google Scholar 

  5. Lipik VT, Abadie MJM (2007) Polyethylene Terephthalate Chemical Recycling in the Melted State. Polym-Plast Technol Eng 46:695–701

    Article  CAS  Google Scholar 

  6. Ahmad I, Mei TM (2009) Mechanical and morphological studies of rubber wood sawdust-filled UPR composite based on recycled PET. Polym-Plast Technol Eng 48:1262–1268

    Article  CAS  Google Scholar 

  7. Guo Z, Lindqvist K, de la Motte H (2018) An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst. J Appl Polym Sci 135:46285

    Article  Google Scholar 

  8. Kawkumpa S, Saisema T, Seoob O, Trakankit C, Atorngitjawat P, Sakulsaknimitr W (2019) Synthesis of polyurethane from glycolysis product of PET using ZnO as catalyst. RMUTSB Acad J 7:29–39

    Google Scholar 

  9. Ünlü AE, Arıkaya A, Takaç S (2019) Use of deep eutectic solvents as catalyst: a mini-review. Green Process Synth 8:355

    Article  Google Scholar 

  10. Smith EL, Abbott AP, Ryder KS (2014) Deep eutectic solvents (DESs) and their applications. Chem Rev 114:11060–11082

    Article  CAS  Google Scholar 

  11. Wang Q, Yao X, Geng Y, Zhou Q, Lu X, Zhang S (2015) Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene terephthalate) (PET). Green Chem 17:2473–2479

    Article  CAS  Google Scholar 

  12. Yunita I, Putisompon S, Chumkaeo P, Poonsawat T, Somsook E (2019) Effective catalysts derived from waste ostrich eggshells for glycolysis of post-consumer PET bottles. Chem Pap 73:1547–1560

    Article  CAS  Google Scholar 

  13. Sert E, Yılmaz E, Atalay FS (2019) Chemical recycling of polyethlylene terephthalate by glycolysis using deep eutectic solvents. J Polym Environ 27:2956–2962

    Article  CAS  Google Scholar 

  14. Zhang Q, De Oliveira Vigier K, Royer S, Jérôme F (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  CAS  Google Scholar 

  15. Musale RM, Shukla SR (2016) Deep eutectic solvent as effective catalyst for aminolysis of polyethylene terephthalate (PET) waste. Int J Plast Technol 20:106–120

    Article  CAS  Google Scholar 

  16. Rushell E, Tailor YK, Khandewal S, Verma K, Agarwal M, Kumar M (2019) Deep eutectic solvent promoted synthesis of structurally diverse hybrid molecules with privileged heterocyclic substructures. New J Chem 43:12462–12467

    Article  CAS  Google Scholar 

  17. Parnica J, Antalik M (2014) Urea and guanidine salts as novel components for deep eutectic solvents. J Mol Liq 197:23–26

    Article  CAS  Google Scholar 

  18. Esquer R, García JJ (2019) Metal-catalysed Poly(Ethylene) terephthalate and polyurethane degradations by glycolysis. J Organometall Chem 902:120972

    Article  CAS  Google Scholar 

  19. Ertas K, Güçlü G (2005) Alkyd resins synthesized from glycolysis products of waste PET. Polym-Plast Technol Eng 44:783–794

    Article  CAS  Google Scholar 

  20. Chee T-M, Tin Sin L, Bee S-T, Tee T-T, Kadhum AAH, Rahmat AR (2015) Roles of calcium, zinc, copper and titanium compounds on the degradation of polymers. Polym-Plast Technol Eng 54:441–461

    Article  CAS  Google Scholar 

  21. Akdogan E, Erdem M, Ureyen ME, Kaya M (2019) Rigid polyurethane foams with halogen‐free flame retardants: thermal insulation, mechanical, and flame retardant properties. J Appl Polym Sci 47611

  22. Ivdre A, Abolins A, Sevastyanova I, Kirpluks M, Cabulis U, Merijs-Meri R (2020) Rigid polyurethane foams with various isocyanate indices based on polyols from rapeseed oil and waste PET. Polymers (Basel) 12:738

    Article  CAS  Google Scholar 

  23. Gunatillake PA, Adhikari R (2011) Biodegradable polyurethanes: design, synthesis, properties and potential applications. In: Felton GP (ed) Biodegradable polymers: processing, degradation and applications. Nova Science Publishers, Hauppauge, NY, pp 431–470

    Google Scholar 

  24. Borowicz M, Paciorek-Sadowska J, Lubczak J, Czupryński B (2019) Biodegradable, flame-retardant, and bio-based rigid polyurethane/polyisocyanurate foams for thermal insulation application. Polymers (Basel) 11:1816

    Article  CAS  Google Scholar 

  25. Mukesh C, Mondal D, Sharma M, Prasad K (2014) Choline chloride–thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohyd Polym 103:466–471

    Article  CAS  Google Scholar 

  26. Liu B, Fu W, Lu X, Zhou Q, Zhang S (2018) Lewis acid-base synergistic catalysis for polyethylene terephthalate degradation by 1, 3-dimethylurea/Zn (OAc) 2 deep eutectic solvent. ACS Sustain Chem Eng 7:3292–3300

    Article  Google Scholar 

  27. Auvergne R, Colomines G, Robin J-J, Boutevin B (2007) Synthesis and characterization of UV-curable resins from the glycolysis of PET: vinyl ether/maleate UV-curing system. Macromol Chem Phys 208:690–701

    Article  CAS  Google Scholar 

  28. Colomines G, Robin J-J, Tersac G (2005) Study of the glycolysis of PET by oligoesters. Polymer 46:3230–3247

    Article  CAS  Google Scholar 

  29. Hu Y, Wang Y, Zhang X, Qian J, Xing X, Wang X (2020) Synthesis of poly(ethylene terephthalate) based on glycolysis of waste PET fiber. J Macromol Sci A 57:430–438

    Article  CAS  Google Scholar 

  30. Sert E, Yılmaz E, F.S.J.J.o.P. Atalay, t. Environment (2019) Chemical recycling of polyethlylene terephthalate by glycolysis using deep eutectic solvents. 27:2956–2962

  31. Zhou L, Lu X, Ju Z, Liu B, Yao H, Xu J, Zhou Q, Hu Y, Zhang S (2019) Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts. Green Chem 21:897–906

    Article  CAS  Google Scholar 

  32. Wang Y-W, Shen R, Wang Q, Vasquez Y (2018) ZnO Microstructures as flame-retardant coatings on cotton fabrics. ACS Omega 3:6330–6338

    Article  CAS  Google Scholar 

  33. Ning Y, Guo S (2000) Flame-retardant and smoke-suppressant properties of zinc borate and aluminum trihydrate-filled rigid PVC. J Appl Polym Sci 77:3119–3127

    Article  CAS  Google Scholar 

  34. Schartel B (2010) Phosphorus-based flame retardancy mechanisms-old hat or a starting point for future development? Materials (Basel) 3:4710–4745

    Article  CAS  Google Scholar 

  35. Neisius M, Liang S, Mispreuve H, Gaan S (2013) Phosphoramidate-containing flame-retardant flexible polyurethane foams. Ind Eng Chem Res 52:9752–9762

    Article  CAS  Google Scholar 

  36. Duquesne S, Le Bras M, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T, Vezin H (2001) Mechanism of fire retardancy of polyurethanes using ammonium polyphosphate. J Appl Polym Sci 82:3262–3274

    Article  CAS  Google Scholar 

  37. Li M, Luo J, Huang Y, Li X, Yu T, Ge M (2014) Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. J Appl Polym Sci. https://doi.org/10.1002/app.40857

    Article  Google Scholar 

  38. Ye L, Zhang Y, Wang S, Gao G, Liu J, Zhou Y, Liu H (2014) Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene. J Therm Anal Calorim 115:1065–1071

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Korea Research Institute of Chemical Technology and the Chung-Ang University Research Grant in 2020.

Author information

Authors and Affiliations

Authors

Contributions

PS analyzed and interpreted the data. SC and Elsa created the diagram and performed the experiments. SMG analyzed and interpreted the data, especially the kinetics. PS was a major contributor in writing the manuscript, and SMG supervised the project. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Simon MoonGeun Jung.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.S., Kim, SC., Tikue, E.T. et al. One-Pot Reaction of Waste PET to Flame Retardant Polyurethane Foam, via Deep Eutectic Solvents-Based Conversion Technology. J Polym Environ 30, 333–343 (2022). https://doi.org/10.1007/s10924-021-02202-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02202-6

Keywords

Navigation