Skip to main content
Log in

Scattering threshold for the focusing coupled Schrödinger system revisited

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

This note investigates the coupled Schrödinger system

$$\begin{aligned} i\dot{u}_j +\Delta u_j= -\left( \sum \nolimits _{k=1}^{m}a_{jk}|u_k|^p\right) |u_j|^{p-2}u_j. \end{aligned}$$

Indeed, beyond the mass-energy threshold given in Saanouni (Appl Anal, 2020. https://doi.org/10.1080/00036811.2020.1808201), a scattering versus finite time blow-up dichotomy is obtained in the mass super-critical and energy sub-critical regime. Moreover, one extends the previous work [18] to the non-radial case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661 (1999)

    Article  Google Scholar 

  2. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödinger equation. Math. Res. Lett. 15(5–6), 1233–1250 (2008)

    Article  MathSciNet  Google Scholar 

  3. Duyckaerts, T., Merle, F.: Dynamic of thresholds solutions for energy-critical NLS. Geom. Funct. Anal. 18(6), 1787–1840 (2009)

    Article  MathSciNet  Google Scholar 

  4. Duyckaerts, T., Roudenko, S.: Going beyond the threshold: scattering and blow-up in the focusing NLS equation. Commun. Math. Phys. 334, 1573–1615 (2015)

    Article  MathSciNet  Google Scholar 

  5. Farah, L.G., Pastor, A.: Scattering for a 3D coupled nonlinear Schrödinger system. J. Math. Phys. 58, 071502 (2017)

    Article  MathSciNet  Google Scholar 

  6. Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyper. Differ. Equ. 2(1), 1–24 (2005)

    Article  MathSciNet  Google Scholar 

  7. Guevara, C.D.: Global behavior of finite energy solutions to the d-dimensional focusing nonlinear Schrödinger equation. Appl. Math. Res. Express 2, 177–243 (2014)

    MATH  Google Scholar 

  8. Guevara, C.D.: Global behavior of finite energy solutions to the focusing nonlinear Schrödinger equation in d-dimensions. PhD Thesis, Arizona State University (2011)

  9. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers II: normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973)

    Article  Google Scholar 

  10. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation. Commun. Math. Phys. 282, 435–467 (2008)

    Article  Google Scholar 

  11. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201(2), 147–212 (2008)

    Article  MathSciNet  Google Scholar 

  12. Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)

    Article  Google Scholar 

  13. Ma, L., Zhao, L.: Sharp thresholds of blow-up and global existence for the coupled nonlinear Schrödinger system. J. Math. Phys. 49, 062103 (2008)

    Article  MathSciNet  Google Scholar 

  14. Nguyen, N.V., Tian, R., Deconinck, B., Sheils, N.: Global existence for a coupled system of Schrödinger equations with power-type non-linearities. J. Math. Phys. 54, 011503 (2013)

    Article  MathSciNet  Google Scholar 

  15. Pastor, A.: Weak concentration and wave operator for a 3D coupled nonlinear Schrödinger system. J. Math. Phys. 56, 021507 (2015)

    Article  MathSciNet  Google Scholar 

  16. Saanouni, T.: A note on coupled focusing nonlinear Schrödinger equations. Appl. Anal. 95(9), 2063–2080 (2016)

    Article  MathSciNet  Google Scholar 

  17. Saanouni, T.: On defocusing coupled nonlinear Schrödinger equations. J. Abs. Differ. Equ. Appl. 7(1), 78–96 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Saanouni, T.: Scattering threshold for a coupled focusing nonlinear Schrödinger system. Appl. Anal. (2020). https://doi.org/10.1080/00036811.2020.1808201

    Article  MATH  Google Scholar 

  19. Xu, Y.: Global well-posedness, scattering, and blowup for nonlinear coupled Schrödinger equations in \({\mathbb{R}}^3\). Appl. Anal. 95(3), 483–502 (2016)

    Article  MathSciNet  Google Scholar 

  20. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Sov. Phys. J. Appl. Mech. Tech. Phys. 4, 190–194 (1968)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarek Saanouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of (4.5)

Appendix: Proof of (4.5)

Let \(u\in C({\mathbb {R}}, H)\), a solution to (1.1). Denote the quantity

$$\begin{aligned} V(t):=R^2\sum _{j=1}^m\int _{{\mathbb {R}}^N}\psi \left( \frac{x}{R}\right) |u_j(t,x)|^2\,dx. \end{aligned}$$

Multiplying the equation (1.1) by \(2u_j\) and examining the imaginary parts,

$$\begin{aligned} \partial _t (|u_j|^2) =-2\mathfrak {I}({\bar{u}}_j \Delta u_j). \end{aligned}$$

Thus, one gets

$$\begin{aligned} V'= & {} -2R^2\sum _{j=1}^m\int _{{\mathbb {R}}^N}\psi \left( \frac{x}{R}\right) \mathfrak {I}({\bar{u}}_j \Delta u_j)\,dx\\= & {} 2R\sum _{j=1}^m\mathfrak {I}\int _{{\mathbb {R}}^N}\left( \nabla \psi \left( \frac{x}{R}\right) .\nabla u_j\right) {\bar{u}}_j \,dx\\= & {} 2R\sum _{j=1}^m\mathfrak {I}\int _{{\mathbb {R}}^N}\left( \partial _k\psi \left( \frac{x}{R}\right) \partial _ku_j\right) {\bar{u}}_j \,dx. \end{aligned}$$

Denote \({\mathcal {N}}:=\Big (\sum _{k=1}^{m}a_{jk}|u_k|^p\Big )|u_j|^{p-2}u_j\) and Compute using the Eq. (1.1),

$$\begin{aligned} \partial _t\mathfrak {I}(\partial _k u_j{\bar{u}}_j)= & {} \mathfrak {I}(\partial _k\dot{u}_j{\bar{u}}_j)+\mathfrak {I}(\partial _k u_j\bar{\dot{u}}_j)\\= & {} \mathfrak {R}(i\dot{u}_j\partial _k{\bar{u}}_j)-\mathfrak {R}(i\partial _k \dot{u}_j\bar{u}_j)\\= & {} \mathfrak {R}(\partial _k{\bar{u}}_j(-\Delta u_j-{\mathcal {N}}))-\mathfrak {R}({\bar{u}}_j\partial _k(-\Delta u_j-{\mathcal {N}}))\\= & {} \mathfrak {R}({\bar{u}}_j\partial _k\Delta u_j-\partial _k{\bar{u}}_j\Delta u_j)+\mathfrak {R}({\bar{u}}_j\partial _k{\mathcal {N}}-\partial _k{\bar{u}}_j{\mathcal {N}}). \end{aligned}$$

Recall the identity

$$\begin{aligned} \frac{1}{2}\partial _k\Delta (|u_j|^2)-2\partial _l\mathfrak {R}(\partial _{k}u_j\partial _l{\bar{u}}_j)=\mathfrak {R}({\bar{u}}_j\partial _k\Delta u_j-\partial _k{\bar{u}}_j\Delta u_j). \end{aligned}$$

Then,

$$\begin{aligned} (I)_j:= & {} \int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}({\bar{u}}_j\partial _k\Delta u_j-\partial _k{\bar{u}}_j\Delta u_j)\,dx\\= & {} \int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \left( \frac{1}{2}\partial _k\Delta (|u_j|^2)-2\partial _l\mathfrak {R}(\partial _ku_j\partial _l{\bar{u}}_j)\right) \,dx\\= & {} -\,\frac{1}{2R^3}\int _{{\mathbb {R}}^N}\Delta ^2\psi \left( \frac{x}{R}\right) |u_j|^2\,dx+\frac{2}{R}\int _{{\mathbb {R}}^N}\partial _l\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}(\partial _ku_j\partial _l{\bar{u}}_j)\,dx. \end{aligned}$$

Moreover,

$$\begin{aligned} (II)_j:= & {} \int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}({\bar{u}}_j\partial _k{\mathcal {N}}-\partial _k{\bar{u}}_j{\mathcal {N}})\,dx\\= & {} \int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}(\partial _k[{\bar{u}}_j{\mathcal {N}}]-2\partial _k{\bar{u}}_j{\mathcal {N}})\,dx\\= & {} -\,\int _{{\mathbb {R}}^N}\left( \frac{1}{R}\Delta \psi \left( \frac{x}{R}\right) {\bar{u}}_j{\mathcal {N}}+2\mathfrak {R}\left( \partial _k\psi \left( \frac{x}{R}\right) \partial _k{\bar{u}}_j{\mathcal {N}}\right) \right) \,dx\\= & {} -\,\frac{1}{R}\sum _{k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\Delta \psi \left( \frac{x}{R}\right) |u_ku_j|^p\,dx-2\int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}\left( \partial _k{\bar{u}}_j{\mathcal {N}}\right) \,dx. \end{aligned}$$

Now, write

$$\begin{aligned} \mathfrak {R}(\partial _k{\bar{u}}_j{\mathcal {N}})= & {} \displaystyle \sum _{l=1}^{m}a_{jl}\mathfrak {R}(\partial _k{\bar{u}}_j|u_l|^p|u_j|^{p-2}u_j)\\= & {} \frac{1}{p}\displaystyle \sum _{l=1}^{m}a_{jl}\partial _k(|u_j|^p)|u_l|^p. \end{aligned}$$

Then,

$$\begin{aligned} \displaystyle \sum _{j=1}^{m}\mathfrak {R}(\partial _k{\bar{u}}_j{\mathcal {N}})= & {} \frac{1}{p}\displaystyle \sum _{j,l=1}^{m}a_{jl}\partial _k(|u_j|^p)|u_l|^p\\= & {} \frac{1}{2p}\displaystyle \sum _{j,l=1}^{m}a_{jl}\partial _k(|u_ju_l|^p). \end{aligned}$$

So,

$$\begin{aligned} \sum _{j=1}^m(II)_j= & {} -\,\frac{1}{R}\sum _{j,k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\Delta \psi \left( \frac{x}{R}\right) |u_ku_j|^p\,dx-2\sum _{j=1}^m\int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}(\partial _k{\bar{u}}_j{\mathcal {N}})\,dx\\= & {} -\,\frac{1}{R}\sum _{j,k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\Delta \psi \left( \frac{x}{R}\right) |u_ku_j|^p\,dx-\frac{1}{p}\sum _{j,k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \partial _k(|u_ju_k|^p)\,dx\\ \end{aligned}$$

Finally

$$\begin{aligned} V''(t)= & {} 2R\left( \sum _{j=1}^m(I)_j+\sum _{j=1}^m(II)_j\right) \\= & {} 2R\left( \sum _{j=1}^m-\frac{1}{2R^3}\int _{{\mathbb {R}}^N}\Delta ^2\psi \left( \frac{x}{R}\right) |u_j|^2\,dx+\frac{2}{R}\int _{{\mathbb {R}}^N}\partial _l\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}(\partial _ku_j\partial _l{\bar{u}}_j)\,dx\right) \\&+\,2R\left( -\frac{1}{R}\sum _{j,k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\Delta \psi (\frac{x}{R})|u_ku_j|^p\,dx-\frac{1}{p}\sum _{j,k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\partial _k\psi \left( \frac{x}{R}\right) \partial _k(|u_ju_k|^p)\,dx\right) \\= & {} -\frac{1}{R^2}\int _{{\mathbb {R}}^N}\Delta ^2\psi \left( \frac{x}{R}\right) |u|^2\,dx+4\int _{{\mathbb {R}}^N}\partial _l\partial _k\psi \left( \frac{x}{R}\right) \mathfrak {R}(\partial _ku\partial _l{\bar{u}})\,dx\\&-\,2\left( 1-\frac{1}{p}\right) \sum _{j,k=1}^{m}a_{jk}\int _{{\mathbb {R}}^N}\Delta \psi \left( \frac{x}{R}\right) |u_ku_j|^p\,dx. \end{aligned}$$

This finishes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saanouni, T. Scattering threshold for the focusing coupled Schrödinger system revisited. Nonlinear Differ. Equ. Appl. 28, 44 (2021). https://doi.org/10.1007/s00030-021-00706-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00706-7

Keywords

Mathematics Subject Classification

Navigation