Skip to main content
Log in

Communication complexity meets cellular automata: Necessary conditions for intrinsic universality

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

A natural way to interpret a cellular automaton (CA) is as a mechanism that computes, in a distributed way, some function f. In other words, from a computer science point of view, CAs can be seen as distributed systems where the cells of the CAs are nodes of a network linked by communication channels. A classic measure of efficiency in such distributed systems is the number of bits exchanged during the computation process. A typical approach is to look for bottlenecks: channels through which the nature of the function f forces the exchange of a significant number of bits. In practice, a widely used way to understand such congestion phenomena is to partition the system into two subsystems and try to find bounds for the number of bits that must pass through the channels that join them. Finding these bounds is the focus of communication complexity theory. Measuring the communication complexity of some problems induced by a CA \(\phi\) turned out to be tremendously useful to give clues regarding the intrinsic universality of \(\phi\) (a CA is said to be intrinsically universal if it is capable of emulating any other). In fact, there exist particular problems \(\mathrm {P}\)’s for which the following key property holds: if \(\phi\) is intrinsically universal, then the communication complexity of \(\mathrm {P}(\phi )\) must be maximal. In this tutorial, we intend to explain the connections that were found, through a series of papers, between intrinsic universality and communication complexity in CAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albert J, Čulik K II (1987) A simple universal cellular automaton and its one-way and totalistic version. Complex Syst 1:1–16

    MathSciNet  MATH  Google Scholar 

  • Aldana M, Coppersmith S, Kadanoff LP (2003) Boolean dynamics with random couplings. In Perspectives and Problems in Nolinear Science (pp. 23–89)

  • Arora S, Barak B (2009) Computational complexity: a modern approach. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Banks ER (1970) Universality in cellular automata. In 11th Annual Symposium on Switching and Automata Theory (SWAT), IEEE, 194–215

  • Batty M (2007) Cities and complexity: understanding cities with cellular automata, agent-based models, and fractals. MIT press, Cambridge

    Google Scholar 

  • Bone C, Dragicevic S, Roberts A (1997) A fuzzy-constrained cellular automata model of forest insect infestations. Ecol Model 24(2):247–261

    Google Scholar 

  • Boyer L, Theyssier G (2009) On local symmetries and universality in cellular automata. Proceedings of the 26th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 195–206

  • Brand D, Zaropulo P (1983) On communicating finite-state machines. J ACM 30:323–342

    Article  MathSciNet  Google Scholar 

  • Briceño R, Meunier P-E (2011) The structure of communication problems in cellular automata. DMTCS Proceedings, AUTOMATA 59–76:2011

    Google Scholar 

  • Briceño R, Moisset de Espanés P, Osses A, Rapaport I (2013) Solving the density classification problem with a large diffusion and small amplification cellular automaton. Physica D 261:70–80

    Article  MathSciNet  Google Scholar 

  • Briceño R, Rapaport I (2013) Letting Alice and Bob choose which problem to solve: implications to the study of cellular automata. Theoret Comput Sci 468:1–11

    Article  MathSciNet  Google Scholar 

  • Censor-Hillel K, Khoury S, Paz A (2017) Quadratic and near-quadratic lower bounds for the CONGEST model. In Proceedings of the 31st International Symposium on Distributed Computing (DISC), 10:1–10:16

  • Chlamtac I, Kutten S (1985) On broadcasting in radio networks - problem analysis and protocol design. IEEE Trans Commun 33(12):1240–1246

    Article  Google Scholar 

  • Clarke KC, Hoppen S, Gaydos L (1997) A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area. Environment and planning B: Planning and design

  • Cook M (2004) Universality in elementary cellular automata. Complex Syst 15:1–40

    MathSciNet  MATH  Google Scholar 

  • Cornejo A, Kuhn F (2010) Deploying wireless networks with beeps. In Proceedings of the 24th International Conference on Distributed Computing (DISC) 148-162

  • Creutz M (1986) Deterministic Ising dynamics. Ann Phys 167(1):62–72

    Article  Google Scholar 

  • Delorme M, Mazoyer J, Ollinger N, Theyssier G (2011) Bulking II: classifications of cellular automata. Theoret Comput Sci 4012(30):3881–3905

    Article  MathSciNet  Google Scholar 

  • Demaine ED, Patitz MJ, Rogers TA, Schweller RT, Summers SM, Woods D (2016) The two-handed tile assembly model is not intrinsically universal. Algorithmica 74(2):812–850

    Article  MathSciNet  Google Scholar 

  • Doty D, Lutz JH, Patitz MJ, Schweller RT, Summers SM, Woods D (2012) The tile assembly model is intrinsically universal. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science (pp. 302–310), IEEE

  • Durand B, Róka Z (1999) Cellular automata: a parallel model, volume 460 of Mathematics and its Applications, chapter The game of life: universality revisited, pages 51–74. Kluwer Academic Publishers,

  • Dürr C, Rapaport I, Theyssier G (2004) Cellular automata and communication complexity. Theoret Comput Sci 322:355–368

    Article  MathSciNet  Google Scholar 

  • Emek Y, Wattenhofer R (2013) Stone age distributed computing. In Proceedings of the 2013 ACM Symposium on Principles of Distributed Computing, 137–146

  • Ermentrout GB, Edelstein-Keshet L (1993) Cellular automata approaches to biological modeling. J Theor Biol 160(1):97–133

    Article  Google Scholar 

  • Fates N, Thierry É, Morvan M, Schabanel N (2006) Fully asynchronous behavior of double-quiescent elementary cellular automata. Theoret Comput Sci 362(1–3):1–16

    Article  MathSciNet  Google Scholar 

  • Fukś H (2002) Nondeterministic density classification with diffusive probabilistic cellular automata. Phys Rev E 66(6):066106

    Article  Google Scholar 

  • Gerdtzen ZP, Salgado JC, Osses A, Asenjo JA, Rapaport I, Andrews BA (2009) Modeling heterocyst pattern formation in cyanobacteria. BMC Bioinformatics. Vol. 10. No. 6. BioMed Central

  • Goles E, Little C, Rapaport I (2008) Understanding a non-trivial cellular automaton by finding its simplest underlying communication protocol. Proceedings of the 19th International Symposium on Algorithms and Computation (ISAAC), pages 592–604

  • Goles E, Meunier P-E, Rapaport I, Theyssier G (2011) Communication complexity and intrinsic universality in cellular automata. Theoret Comput Sci 412:2–21

    Article  MathSciNet  Google Scholar 

  • Goles E, Moreira A, Rapaport I (2011) Communication complexity in number-conserving and monotone cellular automata. Theoret Comput Sci 412:3616–3628

    Article  MathSciNet  Google Scholar 

  • Hedlund GA (1969) Endomorphisms and automorphisms of the shift dynamical systems. Math Syst Theo 3(4):320–375

    Article  MathSciNet  Google Scholar 

  • Karchmer M, Wigderson A (1988) Monotone circuits for connectivity require super-logarithmic depth. Proceedings of the 27th Annual ACM Symposium on Theory of Computing (STOC), pages 539–550. ACM

  • Kari J (1994) Reversibility and surjectivity problems of cellular automata. J Comput Syst Sci 48(1):149–182

    Article  MathSciNet  Google Scholar 

  • Kari J (2005) Theory of cellular automata: a survey. Theoret Comput Sci 334(1–3):3–33

    Article  MathSciNet  Google Scholar 

  • Kauffman SA (1993) The origins of order: Self-organization and selection in evolution. Oxford University Press, Oxford

    Google Scholar 

  • Kurka P (1997) Languages, equicontinuity and attractors in cellular automata. Ergodic Theory Dyn Syst 17(2):417–433

    Article  MathSciNet  Google Scholar 

  • Kushilevitz E, Nisan N (1997) Communication complexity. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lindgren K, Nordahl MG, M. G. (1990) Universal computation in simple one-dimensional cellular automata. Complex Systems 4(3):299–318

  • Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419(1):1–64

    Article  MathSciNet  Google Scholar 

  • Martinelli F, Morris R, Toninelli C (2019) Universality results for kinetically constrained spin models in two dimensions. Commun Math Phys 369(2):761–809

    Article  MathSciNet  Google Scholar 

  • Mazoyer J, Rapaport I (1998) Inducing an order on cellular automata by a grouping operation. Proceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 116–127

  • Mazoyer J, Rapaport. (1999) Global fixed point attractors of circular cellular automata and periodic tilings of the plane: undecidability results. Discrete Mathematics 199(1–3):103–122

  • Meunier PE, Patitz MJ, Summers SM, Theyssier G, Winslow A, Woods D (2014) Intrinsic universality in tile self-assembly requires cooperation. In Proceedings of the twenty-fifth annual ACM-SIAM Symposium on Discrete Algorithms , 752–771, Society for Industrial and Applied Mathematics

  • Moisset de Espanés P, Osses A, Rapaport I (2016) Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case. BioSystems 150:167–176

    Article  Google Scholar 

  • Neary T, Woods D (1998) P-completeness of cellular automaton Rule 110. Proceedings of the 25th International Colloquium on Automata, Languages and Programming (ICALP), pages 132–143

  • Ollinger N (2002) The quest for small universal cellular automata. Proceedings of the 29th International Colloquium on Automata, Languages and Programming (ICALP), pages 318–329

  • Ollinger N (2008) Intrinsically universal cellular automata. Proceedings of International Workshop on The Complexity of Simple Programs (CSP), pages 318–329

  • Ollinger N (2008) Universalities in cellular automata: a (short) survey. Proceedings of the First Symposium on Cellular Automata Journées Automates Cellulaires (JAC), pages 102–118

  • Ollinger N, Richard G (2011) Four states are enough! Theoret Comput Sci 412:22–32

    Article  MathSciNet  Google Scholar 

  • Peleg D (2000) Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics

  • Prusinkiewicz P, Lindenmayer A (2012) The algorithmic beauty of plants. Springer, New York

    MATH  Google Scholar 

  • Rapaport I, Suchan K, Todinca I, Verstraete J (2011) On dissemination thresholds in regular and irregular graph classes. Algorithmica 59(1):16–34

    Article  MathSciNet  Google Scholar 

  • Razborov AA (1990) Applications of matrix methods to the theory of lower bounds in computational complexity. Combinatorica 10(1):81–93

    Article  MathSciNet  Google Scholar 

  • Smith AR III (1971) Simple computation-universal cellular spaces. J ACM (JACM) 18(3):339–353

    Article  MathSciNet  Google Scholar 

  • Theyssier G (2005) How common can be universality for cellular automata? Proceedings of the 26th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 121–132

  • Toffoli T, Margolus NH (1990) Invertible cellular automata: a review. Physica D 45(1–3):229–253

    Article  MathSciNet  Google Scholar 

  • Tomassini M, Giacobini M, Darabos C (2005) Evolution and dynamics of small-world cellular automata. Complex Syst 15(4):261–284

    MathSciNet  MATH  Google Scholar 

  • von Neumann J (1966) Theory of Self-Reproducing Automata. University of Illinois Press, Illinois

    Google Scholar 

  • Wolf-Gradow DA (2004) Lattice-gas cellular automata and lattice Boltzmann models: an introduction. Springer, New York

    Google Scholar 

  • Wolfram S (1993) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601

    Article  MathSciNet  Google Scholar 

  • Wolfram S (1984) Universality and complexity in cellular automata. Physica D 10(1–2):1–35

    Article  MathSciNet  Google Scholar 

  • Woods D (2015) Intrinsic universality and the computational power of self-assembly. Philosoph Trans Royal Soc A: Math, Phys Eng Sci 373(2046):20140214

    Article  Google Scholar 

  • Yao ACC (1979) Some complexity questions related to distributive computing. Proceedings of the 11th Annual ACM Symposium on Theory of Computing, pages 209–213

Download references

Acknowledgements

The first author was supported by ANID/FONDECYT de Iniciación en Investigación 11200892. The second author was supported by ANID/PIA Apoyo a Centros Científicos y Tecnológicos de Excelencia AFB 170001 and Fondecyt 1170021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Rapaport.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Briceño, R., Rapaport, I. Communication complexity meets cellular automata: Necessary conditions for intrinsic universality. Nat Comput 20, 307–320 (2021). https://doi.org/10.1007/s11047-021-09857-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11047-021-09857-z

Keywords

Navigation