Skip to main content
Log in

Simulation Study on Landmines Detection by Pulsed Fast Thermal Neutron Analysis

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, MCNP5 code is used to establish a landmine clearance system based on pulse fast thermal neutron method. The system prototype is modeled based on the NG-9 D-T neutron generator, which is independently developed by Northeast Normal University. Gamma rays produced by fast neutron inelastic scattering and thermal neutron capture are used to identify suspicious areas. The neutron flux passing through landmine cell before and after adding neutron reflector into initial detection system is studied. The simulation results show that the addition of a neutron reflection layer hardly improves the flux of fast neutrons passing through the landmine cell during at pulse width of 10 µs; but the thermal neutron flux through the landmine cell in the pulse interval of 90 µs is significantly increased. Among the several common reflector materials, tungsten (W) and tungsten carbide (WC) materials show better reflection performance. When W and WC are used as reflector materials and the thickness is 6 cm, the thermal neutron flux through the landmine cell is 2.00 and 1.90 times the initial value, respectively. The ratio of the thermal neutron flux in the pulse interval to the fast neutron flux during the emission of the neutron pulse increased to 0.468 and 0.444, respectively, from the initial value of 0.259. Finally, the improved model is used to simulate the landmines hidden in different depths. The results show that using 4.44 MeV and 2.22 MeV peak area counts in the region of interest can identify whether there are explosives in the detection area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Vourvopoulos, G.; Womble, P.C.: Pulsed fast/thermal neutron analysis: a technique for explosives detection. Talanta 54, 459–468 (2001). https://doi.org/10.1016/S0039-9140(00)00544-0

    Article  Google Scholar 

  2. Dep, L.; Vourvopoulos, G.: Pulsed fast and thermal neutron analysis for coal and cement industries. AIP Conf. Proc. 861, 861–864 (2011). https://doi.org/10.1063/1.52722

    Article  Google Scholar 

  3. Sang, H.F.; Wang, F.L.; Liu, L.M.; Sang, H.J.: Detection of element content in coal by pulsed neutron method based on an optimized back-propagation neural network. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 239, 202–208 (2005). https://doi.org/10.1016/j.nimb.2005.04.071

    Article  Google Scholar 

  4. Liu, W.; Li, M.; Gaoa, K.; Gu, D.: Experimental research on detecting explosives by pulsed fast thermal neutron analysis. J. Neutron Res. 18, 29–34 (2015). https://doi.org/10.3233/JNR-150020

    Article  Google Scholar 

  5. Hussein, E.M.A.; Waller, E.J.: Landmine detection: the problem and the challenge. Appl. Radiat. Isot. 53, 557–563 (2000). https://doi.org/10.1016/S0969-8043(00)00218-9

    Article  Google Scholar 

  6. Elsheikh, N.; Viesti, G.; ElAgib, I.; Habbani, F.: On the use of a (252Cf- 3He) assembly for landmine detection by the neutron back-scattering method. Appl. Radiat. Isot. 70, 643–649 (2012). https://doi.org/10.1016/j.apradiso.2012.01.004

    Article  Google Scholar 

  7. Metwally, W.A.: Multi-parameter optimization of a neutron backscattering landmine detection system. Appl. Radiat. Isot. 105, 290–293 (2015). https://doi.org/10.1016/j.apradiso.2015.08.041

    Article  Google Scholar 

  8. Baysoy, D.Y.; Subaşi, M.: Detection of landmines by neutron backscattering: effects of soil moisture on the detection system. AIP Conf. Proc. 1203, 7–10 (2010). https://doi.org/10.1063/1.3322558

    Article  Google Scholar 

  9. McFee, J.E.; Faust, A.A.; Andrews, H.R.; Clifford, E.T.H.; Mosquera, C.M.: Performance of an improved thermal neutron activation detector for buried bulk explosives. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 712, 93–101 (2013). https://doi.org/10.1016/j.nima.2013.02.008

    Article  Google Scholar 

  10. Takahashi, Y.; Misawa, T.; Masuda, K.; Yoshikawa, K.; Takamatsu, T.; Yamauchi, K.; Yagi, T.; Ho Pyeon, C.; Shiroya, S.: Development of landmine detection system based on the measurement of radiation from landmines. Appl. Radiat. Isot. 68, 2327–2334 (2010). https://doi.org/10.1016/j.apradiso.2010.03.021

    Article  Google Scholar 

  11. Maučec, M.; Rigollet, C.: Monte Carlo simulations to advance characterisation of landmines by pulsed fast/thermal neutron analysis. Appl. Radiat. Isot. 61, 35–42 (2004). https://doi.org/10.1016/j.apradiso.2004.02.014

    Article  Google Scholar 

  12. Qin, X.; Zhou, R.; Han, J.F.; Yang, C.W.: GEANT4 simulation of the characteristic gamma-ray spectrum of TNT under soil induced by DT neutrons. Nucl. Sci. Tech. 26, 1–6 (2015). https://doi.org/10.13538/j.1001-8042/nst.26.010501

    Article  Google Scholar 

  13. Xu, X.; Yi, C.; Wanyue, T.; Yuanming, S.; Jingbin, L.; Yumin, L.; Long, Z.; Jiaxi, L.; Xiaoyi, L.: Neutron and photon dose rates in a D-T neutron generator facility. Health Phys. (2020). https://doi.org/10.1097/hp.0000000000001175

    Article  Google Scholar 

  14. Li, C.; Jing, S.; Xue, H.: Dose evaluation in a portable D-T neutron generator facility by Monte Carlo method. J. Radioanal. Nucl. Chem. (2020). https://doi.org/10.1007/s10967-020-07090-z

    Article  Google Scholar 

  15. Uhlář, R.; Kadulová, M.; Alexa, P.; Pištora, J.: A new reflector structure for facility thermalizing D-T neutrons. J. Radioanal. Nucl. Chem. 300, 809–818 (2014). https://doi.org/10.1007/s10967-014-3050-0

    Article  Google Scholar 

  16. Shan, Q.; Chu, S.; Jia, W.: Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator. Appl. Radiat. Isot. 105, 204–208 (2015). https://doi.org/10.1016/j.apradiso.2015.08.029

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Jilin Province Science and Technology Development Project [20190303101SF], and the Sichuan Provincial Higher Education Key Laboratory Criminal Investigation Project-Criminal Science and Technology Laboratory (Sichuan Police College) [2018YB04].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Wei Jing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Shi, GY., He, DD. et al. Simulation Study on Landmines Detection by Pulsed Fast Thermal Neutron Analysis. Arab J Sci Eng 47, 879–885 (2022). https://doi.org/10.1007/s13369-021-05742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05742-0

Keywords

Navigation