Skip to main content

Advertisement

Log in

Risk-Based Electrical-Thermal Scheduling of a Large-Scale Virtual Power Plant Using Downside Risk Constraints for Participating in Energy and Reserve Markets

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, risk-based energy management for a virtual power plant (VPP) participation in reserve and energy markets is presented. The proposed VPP consists of various power generation sources, including wind turbines, photovoltaics (PV),combined heat and power (CHP) units, microturbines, and boilers; power storage sources, including battery storage systems (BSS) and thermal buffer tank (BT); and also energy consumers, including electric vehicles (EV) and end consumers. Furthermore, the demand response program (DRP) is considered for better management on the consumer side. Scenarios are generated using the probability distribution function (PDF) based on existing uncertainties in renewable energy generation, energy price, and consumers' demand and are reduced by employing a scenario reduction method. Two-stage stochastic programming is also applied for the management of the proposed VPP. Through four separate case studies, this paper explores the risk impact on the total profit of the VPP and power exchanges using downside risk constraints. Also, a novel modified robust optimization model that has the same performance as the downside risk constraints is presented and implemented on the developed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

t: :

Time index

s: :

Scenario index

i: :

Index of CHP units

m: :

Index of microturbine units

k: :

Index of boiler units

v: :

Index of EVs

N s: :

Number of scenarios

\( L_{t}^{E} ,L_{t}^{{TH}} ,L_{{t,s}}^{E} ,L_{{t,s}}^{{TH}} \): :

Expected and real-time electrical/thermal demands at hour t (kW)

\( P_{t}^{{PV}} ,P_{t}^{W} ,P_{{t,s}}^{{PV}} ,P_{{t,s}}^{W} \): :

Expected and real-time output of PVs and wind turbines at hour t (kW)

\( p_{s} \): :

Normalized probability of scenarios

\( \lambda _{{NG}} \): :

Natural gas price ($/kWh)

\( \lambda R_{t}^{{RET}} \): :

Hourly price of scheduled reserve provided by the grid at hour t ($/kWh)

\( \lambda R_{{t,s}}^{{RET}} \): :

Real-time price of reserve provided by the grid at hour t and scenarios ($/kWh)

\( \lambda _{t}^{{RET}} \): :

Retail electricity price at hour t ($/kWh)

\( \lambda _{t}^{{TH}} \): :

Hourly price for supplying thermal demands ($/kWh)

\( L_{t}^{{Shift,\, min}} ,L_{t}^{{Shift,\, max}} \): :

Minimum/maximum percentage of load shifting at hour t

\( \eta _{m}^{{MT}} ,\eta _{i}^{{CHP}} ,\eta _{k}^{B} \): :

Efficiency of MT, CHP and boiler units (%)

\( P_{m}^{{MT,min}} ,~P_{m}^{{MT,max}} ,~T_{k}^{{B,min}} ,T_{k}^{{B,max}} \): :

Minimum/maximum output of MT and boiler units (kW)

\( C_{i}^{{CHP,U}} ,C_{i}^{{CHP,D}} ,C_{m}^{{MT,U}} ,C_{m}^{{MT,D}} ,C_{k}^{{B,U}} ,C_{k}^{{B,D}} \): :

Startup/shutdown cost of MT, CHP and boiler units ($)

\( \lambda _{{sell,t}}^{{EV}} ,\lambda _{{buy,t}}^{{EV}} \): :

Price of selling/buying electrical power to/from the PHEVs (charging/discharging) in hour t ($/kWh)

\( P_{{v,\,ch}}^{{EV,\,max}} ,P_{{v,\,dch}}^{{EV,\,max}} \): :

Maximum charge/discharge rate of PHEV batteries (kW)

\( E_{v}^{{EV,\,min}} ,E_{v}^{{EV,\,max}} \): :

Minimum/maximum storage capacity of PHEV batteries (kWh)

\( E_{v}^{0} \): :

Initial stored energy level in PHEV batteries (kWh)

\( \eta _{v}^{{EV,ch}}, \eta _{v}^{{EV,dch}} \): :

Charge and discharge efficiency of PHEV batteries(%)

\( D_{{t,v}}^{{EV}} \): :

Predicted travel distance of PHEVs at hour t (mile)

\( P_{{t,\,v}}^{{EV,\,trv}} \): :

Electricity consumption of PHEVs (mile)

\( \Omega _{v} \): :

Electricity consumption of PHEVs (kWh/mile)

\( \eta _{{BSS}} ,\eta _{{BT}} \): :

Charge and discharge efficiency of BSS and BT (%)

\( \lambda _{{BT}} \): :

Thermal BT cost ($/kWh)

\( Cap^{{BSS,\,min}} ,Cap^{{BSS,\,max}} ,Cap^{{BT,\,min}}, Cap^{{BT,\,max}} \): :

Minimum/maximum capacity of BSS and BT (kWh)

\( P_{{{\text{ch}}}}^{{{\text{BSS}},\,\max }} ,P_{{{\text{dch}}}}^{{{\text{BSS}},\,\max }} ,T_{{{\text{in}}}}^{{{\text{BT}},\,\max }} ,T_{{{\text{out}}}}^{{{\text{BT}},\,\max }} \): :

Maximum charge/discharge rate of BSS and BT (kW)

\( {\text{Loss}}^{{{\text{BT}}}} \): :

The loss rate of BT at hour t (%)

\( P_{{\max }}^{{{\text{line}}}} \): :

Maximum power limit of the line between VPP and the grid (kW)

\(\delta \): :

Optimality robustness coefficient

\( R_{t}^{{{\text{RET}}}} ,{\text{RS}}_{{t,s}}^{{{\text{RET}}}} \): :

Hourly and scenario-based revenue of selling power to the consumers ($)

\( C_{t}^{G} ,\,{\text{CS}}_{{t,s}}^{G} \): :

Hourly cost/revenue related to the scheduled and scenario-based energy exchange between the main grid ($)

\( C_{t}^{{{\text{MT}}}} ,CR_{{t,s}}^{{{\text{MT}}}} \): :

Hourly and scenario-based cost of the microturbines ($)

\( C_{t}^{{{\text{CHP}}}} ,{\text{CR}}_{{t,s}}^{{{\text{CHP}}}} \): :

Hourly and scenario-based cost of the CHPs ($)

\( C_{t}^{B} ,\,{\text{CR}}_{{t,s}}^{B} \): :

Hourly and scenario-based cost of the boilers ($)

\( {\text{PRF}}_{t}^{{{\text{EV}}}} \): :

Hourly revenue from the electrical energy supply of electric vehicles ($)

\( C_{t}^{{{\text{BSS}}}} \): :

Degradation cost of BSS ($)

\( C_{t}^{{{\text{BT}}}} \): :

Degradation cost of BT ($)

\( P_{t}^{G} ,P_{{t,s}}^{G} \): :

Scheduled and real-time exchanged power with the grid at hour t (kW)

\( R_{t}^{{G,\,{\text{buy}}}} \): :

Reserve provided by the grid at hour t (kW)

\( R_{{t,s}}^{{G,\;{\text{sell}}}} \): :

Reserve sold to the grid at hour t and scenario s (kW)

\( L_{{t,s}}^{{E,\;{\text{Shifted}}}} \): :

Electrical demand after being shifted at hour t and scenarios (kW)

\( \delta L_{t}^{E} ,L_{t}^{{E,\;{\text{shift}}}} \): :

Amount and percentage of shifted load at hour t and scenarios

\( P_{{m,t}}^{{{\text{MT}}}} ,P_{{m,t,s}}^{{{\text{MT}}}} \): :

Scheduled and real-time generated power of MTs at hour t (kW)

\( R_{{m,t}}^{{{\text{MT}}}} \): :

Reserve provided by MTs at hour t (kW)

\( P_{{i,t}}^{{{\text{CHP}}}} ,\;T_{{i,t}}^{{{\text{CHP}}}} ,\;P_{{i,t,s}}^{{{\text{CHP}}}} ,\;T_{{i,t,s}}^{{{\text{CHP}}}} \): :

Scheduled and real-time electrical/thermal output of CHPs at hour t (kW)

\( {\text{PR}}_{{i,t}}^{{{\text{CHP}}}} ,\;{\text{TR}}_{{i,t}}^{{{\text{CHP}}}} \): :

Electrical and thermal reserve provided by CHPs at hour t (kW)

\( T_{{k,t}}^{B} ,T_{{k,t,s}}^{B} \): :

Scheduled and real-time generated thermal power of boilers at hour t (kW)

\( R_{{k,t}}^{B} \): :

Thermal reserve provided by boilers at hour t(kW)

\(SU_{{{\text{dg}},t}}^{{{\text{DG}}}} ,\;{\text{SU}}_{{{\text{dg}},t}}^{{{\text{DG}}}} ,\;{\text{SD}}_{{{\text{dg}},t}}^{{{\text{DG}}}} \): :

Startup and shutdown state of MT, CHP and boiler units at hour t

\( E_{{t,v}}^{{{\text{EV}},\;E}} \): :

SOC of PHEV batteries at the end of hour t (kWh)

\( P_{{{\text{ch}},v,t}}^{{{\text{EV}}}} ,\;P_{{{\text{dch}},v,t}}^{{{\text{EV}}}} \): :

Charge/discharge power of PHEV batteries at hour t (kW)

\( U_{{t,{\text{ch}}}}^{{{\text{EV}}}} ,\;U_{{t,{\text{dch}}}}^{{{\text{EV}}}} \): :

Binary variables of charge and discharge of EVs

\( P_{{{\text{ch}},\;t}}^{{{\text{BSS}}}} ,\;P_{{{\text{dch}},\;t}}^{{{\text{BSS}}}} \): :

Charge/discharge power of BSS at hour t (kW)

\( E_{t}^{{{\text{BSS}},\;E}} \): :

SOC of BSS at the end of hour t (kWh)

\( T_{{{\text{in}}}}^{{{\text{BT}}}} ,\;T_{{{\text{out}}}}^{{{\text{BT}}}} \): :

Input/output thermal power of BT at hour t (kWh)

\( E_{t}^{{{\text{BT}},\;{\text{Th}}}} \): :

Stored energy level in BT at the end of hour t (kWh)

\( Z_{s} \): :

Profit of each scenario ($)

References

  1. Corera, J.; Maire, J.: Flexible electricity networks to integrate the expected energy evolution, pp. 1–94 (2009) [Online]. Available: http://fenix.iee.fraunhofer.de/docs/att2x/2009_Fenix_Book_FINAL_for_selfprinting.pdf

  2. Dietrich, K.; Latorre, J.M.; Olmos, L.; Ramos, A.: Modelling and assessing the impacts of self supply and market-revenue driven virtual power plants. Electr. Power Syst. Res. 119, 462–470 (2015)

    Article  Google Scholar 

  3. Shabanzadeh, M.; Sheikh-El-Eslami, M.K.; Haghifam, M.R.: A medium-term coalition-forming model of heterogeneous DERs for a commercial virtual power plant. Appl. Energy 169, 663–681 (2016)

    Article  Google Scholar 

  4. Nosratabadi, S.M.; Hooshmand, R.A.; Gholipour, E.: A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems. Renew. Sustain. Energy Rev. 67, 341–363 (2017)

    Article  Google Scholar 

  5. Yuan, Y.; Wei, Z.; Sun, G.; Sun, Y.; Wang, D.: A real-time optimal generation cost control method for virtual power plant. Neurocomputing 143, 322–330 (2014)

    Article  Google Scholar 

  6. Othman, M.M.; Hegazy, Y.G.; Abdelaziz, A.Y.: Electrical energy management in unbalanced distribution networks using virtual power plant concept. Electr. Power Syst. Res. 145, 157–165 (2017)

    Article  Google Scholar 

  7. Shayegan-Rad, A.; Badri, A.; Zangeneh, A.: Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties. Energy 121, 114–125 (2017)

    Article  Google Scholar 

  8. Baringo, A.; Baringo, L.: A stochastic adaptive robust optimization approach for the offering strategy of a virtual power plant. IEEE Trans. Power Syst. 32(5), 3492–504 (2016)

    Article  Google Scholar 

  9. Giuntoli, M.; Poli, D.: Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages. IEEE Trans. Smart Grid 4(2), 942–955 (2013)

    Article  Google Scholar 

  10. Zamani, A.G.; Zakariazadeh, A.; Jadid, S.; Kazemi, A.: Stochastic operational scheduling of distributed energy resources in a large scale virtual power plant. Int. J. Electr. Power Energy Syst. 82, 608–620 (2016)

    Article  Google Scholar 

  11. Zamani, A.G.; Zakariazadeh, A.; Jadid, S.: Day-ahead resource scheduling of a renewable energy based virtual power plant. Appl. Energy 169, 324–340 (2016)

    Article  Google Scholar 

  12. Sousa, T.; Morais, H.; Vale, Z.; Castro, R.: A multi-objective optimization of the active and reactive resource scheduling at a distribution level in a smart grid context. Energy 85, 236–250 (2015)

    Article  Google Scholar 

  13. Nezamabadi, H.; Setayesh Nazar, M.: Arbitrage strategy of virtual power plants in energy, spinning reserve and reactive power markets. IET Gener. Transm. Distrib 10(3), 750–763 (2016)

    Article  Google Scholar 

  14. Fan, S.; Ai, Q.; Piao, L.: Fuzzy day-ahead scheduling of virtual power plant with optimal confidence level. IET Gener. Transm. Distrib. 10(1), 205–212 (2016)

    Article  Google Scholar 

  15. Tajeddini, M.A.; Rahimi-Kian, A.; Soroudi, A.: Risk averse optimal operation of a virtual power plant using two stage stochastic programming. Energy 73, 958–967 (2014)

    Article  Google Scholar 

  16. Shabanzadeh, M.; Sheikh-El-Eslami, M.K.; Haghifam, M.R.: Risk-based medium-term trading strategy for a virtual power plant with first-order stochastic dominance constraints. IET Gener. Transm. Distrib. 11(2), 520–529 (2017)

    Article  Google Scholar 

  17. Dabbagh, S.R.; Sheikh-El-Eslami, M.K.: Risk assessment of virtual power plants offering in energy and reserve markets. IEEE Trans. Power Syst. 31(5), 3572–3582 (2016)

    Article  Google Scholar 

  18. Li, M.; Hou, J.; Niu, Y.; Liu, J.: Economic dispatch of wind-thermal power system by using aggregated output characteristics of virtual power plants. In: 12th IEEE International Conference on Control and Automation (ICCA), pp. 830–835 (2016). https://doi.org/10.1109/ICCA.2016.7505381

  19. Hadayeghparast, S.; Farsangi, A.S.N.; Shayanfar, H.: Day-ahead stochastic multi-objective economic/emission operational scheduling of a large scale virtual power plant. Energy 172, 630–646 (2019)

    Article  Google Scholar 

  20. Luo, Z.; Hong, S.H.; Ding, Y.M.: A data mining-driven incentive-based demand response scheme for a virtual power plant. Appl. Energy 239, 549–559 (2019)

    Article  Google Scholar 

  21. Naval, N.; Sánchez, R.; Yusta, J.M.: A virtual power plant optimal dispatch model with large and small-scale distributed renewable generation. Renew. Energy 151, 57 (2019)

    Article  Google Scholar 

  22. Yin, S.; Ai, Q.; Li, Z.; Zhang, Y.; Lu, T.: Energy management for aggregate prosumers in a virtual power plant: a robust Stackelberg game approach. Int. J. Electr. Power Energy Syst. 117, 105605 (2020)

    Article  Google Scholar 

  23. Alahyari, A.; Ehsan, M.; Mousavizadeh, M.S.: A hybrid storage-wind virtual power plant (VPP) participation in the electricity markets: a self-scheduling optimization considering price, renewable generation, and electric vehicles uncertainties. J. Energy Storage 25, 100812 (2019)

    Article  Google Scholar 

  24. Xiao, C.; Sutanto, D.; Muttaqi, K.M.; Zhang, M.: Multi-period data driven control strategy for real-time management of energy storages in virtual power plants integrated with power grid. Int. J. Electr. Power Energy Syst. 118, 105747 (2020)

    Article  Google Scholar 

  25. Hany Elgamal, A.; Kocher-Oberlehner, G.; Robu, V.; Andoni, M.: Optimization of a multiple-scale renewable energy-based virtual power plant in the UK. Appl. Energy 256, 113973 (2019)

    Article  Google Scholar 

  26. Kulmukhanova, A.; Al-Awami, A.T.; El-Amin, I.M.; Shamma, J.S.: Mechanism design for virtual power plant with independent distributed generators. IFAC-PapersOnLine 52(4), 419–424 (2019)

    Article  Google Scholar 

  27. Abbasi, M.H.; Taki, M.; Rajabi, A.; Li, L.; Zhang, J.: Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: a multi-stage risk constrained approach. Appl. Energy 239, 1294–1307 (2019)

    Article  Google Scholar 

  28. Shafiekhani, M.; Badri, A.; Shafie-khah, M.; Catalão, J.P.S.: Strategic bidding of virtual power plant in energy markets: a bi-level multi-objective approach. Int. J. Electr. Power Energy Syst. 113, 208–219 (2019)

    Article  Google Scholar 

  29. Karuppiah, R.; Martín, M.; Grossmann, I.E.: A simple heuristic for reducing the number of scenarios in two-stage stochastic programming. Comput. Chem. Eng. 34(8), 1246–1255 (2010)

    Article  Google Scholar 

  30. Farsangi, A.S.N.; Hadayeghparast, S.; Mehdinejad, M.; Shayanfar, H.: A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs. Energy 160, 257–274 (2018)

    Article  Google Scholar 

  31. Soroudi, A.; Keane, A.: Risk averse energy hub management considering plug-in electric vehicles using information gap decision theory. Power Syst. 89, 107–127 (2015)

    Article  Google Scholar 

  32. Eppen, G.D.; Matin, R.K.; Schrage, L.: Scenario approach to capacity planning. Oper. Res. 37(4), 517–527 (1989)

    Article  Google Scholar 

  33. Mulvey, J.M.; Vanderbei, R.J.; Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    Article  MathSciNet  Google Scholar 

  34. Leung, S.C.H.; Tsang, S.O.S.; Ng, W.L.; Wu, Y.: A robust optimization model for multisite production planning problem in an uncertain environment. Eur. J. Oper. Res. 181, 224–38 (2007)

    Article  Google Scholar 

  35. Hourly Ontario Energy Price (HOEP). [Online]. Available: http://www.ieso.ca/power-data/price-overview/hourly-ontarioenergy-price. Accessed 30 Jan 2020

  36. Heunis, S.; Dekenah, M.: A load profile prediction model for residential consumers in South Africa. In: Proceedings of the 22nd Conference on the Domestic Use of Energy (2014). https://doi.org/10.1109/DUE.2014.6827763

  37. Data archives for University of Waterloo weather station. [Online]. Available: http://weather.uwaterloo.ca/data.html. Accessed 30 Jan 2020

  38. Nojavan, S.; Aalami, H.A.: Stochastic energy procurement of large electricity consumer considering photovoltaic, wind-turbine, micro-turbines, energy storage system in the presence of demand response program. Energy Convers. Manag. 103, 1008–1018 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amangaldi Koochaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahkoomahalli, A., Koochaki, A. & Shayanfar, H. Risk-Based Electrical-Thermal Scheduling of a Large-Scale Virtual Power Plant Using Downside Risk Constraints for Participating in Energy and Reserve Markets. Arab J Sci Eng 47, 2663–2683 (2022). https://doi.org/10.1007/s13369-021-05722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-05722-4

Keywords

Navigation