Skip to main content

Advertisement

Log in

Removal of Chlorophenols Compounds Using Treated Jatropha Seed Shells Adsorbents: Characterization and Thermodynamic

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, Jatropha seed shells from Yemeni plant have been tested for studying adsorption of treated seeds shells to remove chlorophenol compounds. The resulting adsorbents were designated as JAT1, JAT2 and JAT3. Most of the acidic groups on the surface were found to be phenolic in nature (37.5% in the case of JAT1 and 60% in the case of JAT). The adsorption of chlorophenol on JAT1, JAT2 and JAT3 was investigated in the temperature range 35–70 °C for initial chlorophenols concentrations ranging from 20 to 100 ppm. JAT2 was thereby found to be the best with respect to its capability to remove chlorophenols from solution indicating that thermal treatment at 500 °C is suitable to produce a good adsorbent. JAT3 is the worst in removing DCP even at high temperatures. It was also found that the removal efficiencies were in general enhanced at lower pH for all three adsorbents and for the two chlorophenols. For DCP, the corresponding heats of adsorption were found to be + 5.3, − 10.75 and − 14.4 kJ/mol. The small values for the heat of adsorption indicate that the interaction of chlorophenols with the adsorbent surface does not differ significantly from its interaction with water molecules in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Persson, Y.: Chlorinated organic pollutants in soil and groundwater at chlorophenol- contaminated sawmill. ISBN 978-91-7264-251-5 (2010)

  2. Czaplicka, M.: Sources and transformation of chlorophenols in the natural environment, September 2003. Sci. Total Environ. 322, 21–39 (2011)

    Article  Google Scholar 

  3. Warrington, P.D.: Water quality, ambient I water quality guidelines for chlorophenols. British Columbia Ministry of Health (1996)

  4. Weber, R.; Gans, C.; Tysklind, M.; Johnston, P.; Forter, M.; Hollert, H.: Dioxins and persistent organic pollutants contaminated sites comemporary and future relevance and challengenes, 15, 363–393 (2012)

  5. Tiernan, T.O.; Taylor, M.L.; Garrett, J.H.; Vanness, G.F.; Solch, J.G.; Agel, D.J.W.; Ferguson, G.L.; Schecter, A.: Sources and fate of polychlorinated dibenzodioxins, dibenzofurans and related compounds in human environments. Environ. Health Perspect. J. 59, 145–158 (1985)

    Google Scholar 

  6. Kauppinen, T.; Lindroos, L.: Chlorophenols exposure in sawmills. Am. Ind. Hygiene Assoc. J. 46, 34–38 (1985)

    Article  Google Scholar 

  7. Carpenter, D.O.; Arcaro, K.; Spink, D.C.: Understanding the human health effect of chemical mixtures. Environ. Health Perspect. 110, 25–42 (2012)

    Article  Google Scholar 

  8. Denizli, A.; Zkan, O.; Ucar, M.: Removal of chlorophenols from aquatic systems with dye-affinity microbeads. Sep. Purif. Technol. 24, 255–262 (2011)

    Article  Google Scholar 

  9. Salame, I.I.; Bandosz, T.J.: Suface chemistry of activated carbons: combining the results of temperature-programmed desorption, boehm, and potentiometric titrations. J. Colloid Interface Sci. 240, 252–258 (2011)

    Article  Google Scholar 

  10. Marwani, H.M.; Albishri, H.M.; Jalal, T.A.; Soliman, E.M.: Study of isotherm and kinetic models of lanthanum adsorption on activated carbon loaded with recently synthesized schiff’s base. Arab. J. Chem. (2013)

  11. Cong, Y.; Wu, Z.; Tan, T.: Dechlorination by combined electrochemical reduction and oxidation. J. Zhejiang Univ. Sci. 6, 563–568 (2010)

    Google Scholar 

  12. Zielke, R.C.; Pinnavaia, T.J.: Modified clays for the adsorption of environmental toxicants: binding of chlorophenols is to pillared, delaminated and Hydroxy_interlayered Smectites. Clays Clay Min. 36, 403–408 (2013)

    Article  Google Scholar 

  13. Xu, P.; Zeng, G.M.; Huang, D.L.; Feng, C.L.; Hu, S.; Zhao, M.H.; Lai, C.; Wei, Z.; Huang, C.: Use of iron oxide nanomaterials in waste water treatment: a review. Sci. Total Environ. 424, 1–10 (2012)

    Article  Google Scholar 

  14. Wang, S.L.; Tzou, Y.M.; Lu, Y.H.; Sheng, G.: Removal of 3-chlorophenol from water using rice-straw-based carbon. J. Hazard. Mater. 147(3), 13–318 (2017)

    Google Scholar 

  15. Knettig, E.; Thomson, B.M.; Hrudey, S.E.: Competitive activated carbon adsorption of phenolic compounds. Environ. Pollut. Ser. B 12, 281–299 (1986)

    Article  Google Scholar 

  16. Ali, I.; Gupta, V.K.; Aboul-Enein, H.Y.: Metal ion speciation and capillary electrophoresis: application in the new millennium. Electrophoresis 26(21), 3988–4002 (2005)

    Article  Google Scholar 

  17. Ali, I.; et al.: Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019)

    Article  Google Scholar 

  18. Basheer, A.A.: Chemical chiral pollution: impact on the society and science and need of the regulations in the 21st century. Chirality 30(4), 402–406 (2018)

    Article  Google Scholar 

  19. Basheer, A.A.: New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018)

    Article  Google Scholar 

  20. Basheer, A.A.; Ali, I.: Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water-sediment system. Chirality 30(9), 1088–1095 (2018)

    Article  Google Scholar 

  21. Ali, I.; Jain, C.K.: Groundwater contamination and health hazards by some of the most commonly used pesticides. Curr. Sci. 75(10), 1011–1014 (1998)

    Google Scholar 

  22. Nodeh, H.R.; et al.: Development of magnetic graphene oxide adsorbent for the removal and preconcentration of As (III) and As (V) species from environmental water samples. Environ. Sci. Pollut. Res. 23(10), 9759–9773 (2016)

    Article  Google Scholar 

  23. Burakova, E.A.; et al.: Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liquids 253, 340–346 (2018)

    Article  Google Scholar 

  24. Ali, I.; et al.: Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019)

    Article  Google Scholar 

  25. Ali, Imran.: Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J. Mol. Liq. 271, 677–685 (2018)

    Article  Google Scholar 

  26. Ali, I.; Aboul-Enein, H.Y.: Speciation of metal ions by capillary electrophoresis. Crit. Rev. Anal. Chem. 32(4), 337–350 (2002)

    Article  Google Scholar 

  27. Ali, I.; et al.: Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253 (2019)

    Article  Google Scholar 

  28. Ali, I.; et al.: Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem. Photobiol. 94(5), 935–941 (2018)

    Article  Google Scholar 

  29. Ali, I.; et al.: Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf. B Biointerfaces 171, 606–613 (2018)

    Article  Google Scholar 

  30. Ali, I.; et al.: Water treatment by new-generation graphene materials: hope for bright future. Environ. Sci. Pollut. Res. 25(8), 7315–7329 (2018)

    Article  Google Scholar 

  31. Al-Shaalan, N.H.; et al.: High performance removal and simulation studies of diuron pesticide in water on MWCNTs. J. Mol. Liquids 289, 111039 (2019)

    Article  Google Scholar 

  32. Ma, S.; Gao, F.; Lu, W.; Zhou, N.; You, H.; Li, J.; Chen, L.: Dispersive liquid-liquid microextraction coupled with pressure-assisted electrokinetic injection for simultaneous enrichment of seven phenolic compounds in water samples followed by determination using capillary electrophoresis. J. Sep. Sci. 42(13), 2263–2271 (2019)

    Article  Google Scholar 

  33. Lu, W.; Wang, X.; Wu, X.; Liu, D.; Li, J.; Chen, L.; Zhang, X.: Multi-template imprinted polymers for simultaneous selective solid-phase extraction of six phenolic compounds in water samples followed by determination using capillary electrophoresis. J. Chromatogr. A 1483, 30–39 (2017)

    Article  Google Scholar 

  34. Bounaas, M.; Bouguettoucha, A.; Chebli, D.; Gatica, J.M.; Vidal, H.: Role of the wild carob as biosorbent and as precursor of a new high-surface-area activated carbon for the adsorption of methylene blue. Arab. J. Sci. Eng. 1–17 (2020)

  35. Wu, G.; Ma, J.; Li, S.; Guan, J.; Jiang, B.; Wang, L.; Chen, L.: Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J. Colloid Interface Sci. 528, 360–371 (2018)

    Article  Google Scholar 

  36. Wu, G.; Ma, J.; Li, S.; Wang, S.; Jiang, B.; Luo, S.; Chen, L.: Cationic metal-organic frameworks as an efficient adsorbent for the removal of 2, 4-dichlorophenoxyacetic acid from aqueous solutions. Environ. Res. 109542 (2020)

  37. Ma, J.; Li, S.; Wu, G.; Arabi, M.; Tan, F.; Guan, Y.; Chen, L.: Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. J. Ind. Eng. Chem. 90, 178–189 (2020)

    Article  Google Scholar 

  38. Wang, L.; Li, J.; Wang, J.; Guo, X.; Wang, X.; Choo, J.; Chen, L.: Green multi-functional monomer based ion imprinted polymers for selective removal of copper ions from aqueous solution. J. Colloid Interface Sci. 541, 376–386 (2019)

    Article  Google Scholar 

  39. Akhlaghian, F.; Ghadermazi, M.; Chenarani, B.: Removal of phenolic compounds by adsorption on nano structured aluminosilicates. J. Environ. Chem. Eng. 1–7 (2013)

  40. Weber, T.W.; Chakravorti, R.K.: Pore and solid diffusion models for fixed bed adsorbents. J. Am. Inst. Chern. Eng. 20, 228–238 (2011)

    Article  Google Scholar 

  41. Ahmaruzzaman, M.: A review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 36, 327–363 (2010)

    Article  Google Scholar 

  42. Goertzen, S.L.; Theriault, K.D.; Oickle, A.M.; Tarasuk, A.C.; Andreas, H.A.: Standardization of the Boehm titration: part I CO2 expulsion and endpoint determination. Carbon 48, 1252–1261 (2010)

    Article  Google Scholar 

  43. Oickle, A.M.; Goertzen, S.L.; Hopper, K.R.; Abdulla, Y.O.; Andreas, H.A.: Standardization of the Boehm titration: part 11, method of agitation, effect of filtering, and dilute titrant. Carbon 48(33), 13–3322 (2010)

    Google Scholar 

  44. Friestad, H.O.: Analyt. Chem. (1969) XLI 1750-1754

  45. Radovic, L.; Moreno-Castilla, C.; Rivera-Utrilla, J.: Carbon materials as adsorbents in aqueous solutions. In: Radovic, L. (ed.) Chemistry and Physics of Carbon, vol. 27. Mercel Dekker, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ammar Alkhawlani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkhawlani, A., Howladar, S.M. Removal of Chlorophenols Compounds Using Treated Jatropha Seed Shells Adsorbents: Characterization and Thermodynamic. Arab J Sci Eng 47, 485–496 (2022). https://doi.org/10.1007/s13369-020-05329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05329-1

Keywords

Navigation