Skip to main content
Log in

Diffraction of the Aharonov–Bohm Hamiltonian

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we compute the diffractive wave propagator of the Aharonov–Bohm effect (Aharonov and Bohm, Phys Rev 115(3):485, 1959) on \({\mathbf {R}}^2\) with a single solenoid using a technique of moving solenoid location. In addition, we compute the corresponding diffraction coefficient which is the principal symbol of the diffractive propagator. This paper proves the propagation of singularities of the Aharonov–Bohm Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Note that we use the standard \(L^2\)-weight here rather that the b-weight used in [20]. This gives a one order difference in r comparing to [20].

  2. Although these are only locally well-defined functions on \({\mathbf {R}}^2\) individually, the pairing is well-defined due to the complex conjugation in the sesquilinear pairing.

References

  1. Aharonov, Y., Bohm, D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115(3), 485 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  2. Adami, R., Teta, A.: On the Aharonov–Bohm Hamiltonian. Lett. Math. Phys. 43(1), 43–54 (1998)

    Article  MathSciNet  Google Scholar 

  3. Alexandrova, I., Tamura, H.: Resonance free regions in magnetic scattering by two solenoidal fields at large separation. J. Funct. Anal. 260(6), 1836–1885 (2011)

    Article  MathSciNet  Google Scholar 

  4. Alexandrova, I., Tamura, H.: Resonances in scattering by two magnetic fields at large separation and a complex scaling method. Adv. Math. 256, 398–448 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bruneau, L., Dereziński, J., Georgescu, V.: Homogeneous Schrödinger operators on half-line. In: Annales Henri Poincaré, vol. 12, pp. 547–590. Springer (2011)

  6. Correggi, M., Fermi, D.: Magnetic perturbations of anyonic and Aharonov-Bohm schrödinger operators. J. Math. Phys. 62(3), 032101 (2021)

    Article  ADS  Google Scholar 

  7. Correggi, M., Oddis, L.: Hamiltonians for two-anyon systems. Rend. Mat. Appl. 7(39), 277–292 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Cheeger, J., Taylor, M.: On the diffraction of waves by conical singularities. I. Commun. Pure Appl. Math. 35(3), 275–331 (1982)

    Article  MathSciNet  Google Scholar 

  9. Dereziński, J., Faupin, J., Nguyen, Q.N., Richard, S.: On radial Schrödinger operators with a Coulomb potential: general boundary conditions. Adv. Oper. Theory 5(3), 1132–1192 (2020)

    Article  MathSciNet  Google Scholar 

  10. Duistermaat, J.J., Hörmander, L.: Fourier integral operators. II. Acta Math. 128(1), 183–269 (1972)

    Article  MathSciNet  Google Scholar 

  11. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.26 of 2020-03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds

  12. De Oliveira, C.R., Pereira, M.: Mathematical justification of the Aharonov–Bohm Hamiltonian. J. Stat. Phys. 133(6), 1175–1184 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  13. De Oliveira, C.R., Pereira, M.: Scattering and self-adjoint extensions of the Aharonov–Bohm Hamiltonian. J. Phys. A: Math. Theor. 43(35), 354011 (2010)

    Article  MathSciNet  Google Scholar 

  14. Dereziński, J., Richard, S.: On Schrödinger operators with inverse square potentials on the half-line. In: Annales Henri Poincaré, vol. 18, pp. 869–928. Springer (2017)

  15. Dereziński, J., Richard, S.: On radial Schrödinger operators with a Coulomb potential. In: Annales Henri Poincaré, vol. 19, pp. 2869–2917. Springer (2018)

  16. Dabrowski, L., Št’ovıček, P.: Aharonov–Bohm effect with \(\delta \)-type interaction. J. Math. Phys. 39(1), 47–62 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Exner, P., Št’ovı’ček, P., Vytřas, P.: Generalized boundary conditions for the Aharonov–Bohm effect combined with a homogeneous magnetic field. J. Math. Phys. 43(5), 2151–2168 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ford, G.A., Hassell, A., Hillairet, L.: Wave propagation on Euclidean surfaces with conical singularities. I: geometric diffraction. J. Spect. Theory 8(2), 605–667 (2018)

    Article  MathSciNet  Google Scholar 

  19. Ford, G.A., Wunsch, J.: The diffractive wave trace on manifolds with conic singularities. Adv. Math. 304, 1330–1385 (2017)

    Article  MathSciNet  Google Scholar 

  20. Gil, J.B., Mendoza, G.A.: Adjoints of elliptic cone operators. Am. J. Math. 125(2), 357–408 (2003)

    Article  MathSciNet  Google Scholar 

  21. Ito, H.T., Tamura, H.: Aharonov-Bohm effect in scattering by point-like magnetic fields at large separation. In: Annales Henri Poincaré, vol. 2, pp. 309–359. Springer (2001)

  22. Keller, J.B.: Geometrical theory of diffraction. Josa 52(2), 116–130 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  23. Mine, T.: The Aharonov-Bohm solenoids in a constant magnetic field. In: Annales Henri Poincaré, vol. 6, pp. 125–154. Springer (2005)

  24. Melrose, R.B., Uhlmann, G.A.: Lagrangian intersection and the Cauchy problem. Commun. Pure Appl. Math. 32(4), 483–519 (1979)

    Article  MathSciNet  Google Scholar 

  25. Melrose, R., Wunsch, J.: Propagation of singularities for the wave equation on conic manifolds. Invent. Math. 156(2), 235–299 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  26. Nambu, Y.: The Aharonov–Bohm problem revisited. Nucl. Phys. B 579(3), 590–616 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  27. Pankrashkin, K., Richard, S.: Spectral and scattering theory for the Aharonov–Bohm operators. Rev. Math. Phys. 23(01), 53–81 (2011)

    Article  MathSciNet  Google Scholar 

  28. Ruijsenaars, S.N.M.: The Aharonov–Bohm effect and scattering theory. Ann. Phys. 146(1), 1–34 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  29. Št’ovíček, P.: Krein’s formula approach to the multisolenoid Aharonov–Bohm effect. J. Math. Phys. 32(8), 2114–2122 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  30. Št’ovíček, P.: Scattering matrix for the two-solenoid Aharonov–Bohm effect. Phys. Lett. A 161(1), 13–20 (1991)

    Article  ADS  Google Scholar 

  31. Št’ovíček, Pavel: Scattering on a finite chain of vortices. Duke Math. J. 76(1), 303–332 (1994)

    MathSciNet  Google Scholar 

  32. Tamura, H.: Semiclassical analysis for magnetic scattering by two solenoidal fields: total cross sections. In: Annales Henri Poincaré, vol. 8, pp. 1071–1114. Springer (2007)

  33. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press (1995)

  34. Yang, M.: Propagation of polyhomogeneity, diffraction and scattering on product cones. ArXiv preprint arXiv:2004.07030 (2020)

  35. Yang, M.: The wave trace and resonances of the magnetic Hamiltonian with singular vector potentials. arXiv:2105.06542 (2021)

Download references

Acknowledgements

The author is grateful to Luc Hillairet and Jared Wunsch for proposing this topic, and to Dean Baskin, Luc Hillairet and two anonymous referees for helpful comments on the manuscript. The author is especially very grateful to Jared Wunsch for many helpful discussions as well as valuable comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxuan Yang.

Additional information

Communicated by Jan Derezinski.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M. Diffraction of the Aharonov–Bohm Hamiltonian. Ann. Henri Poincaré 22, 3619–3640 (2021). https://doi.org/10.1007/s00023-021-01069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01069-6

Navigation