Skip to main content

Advertisement

Log in

MiR-146a Negatively Regulates Aspergillus fumigatus-Induced TNF-α and IL-6 Secretion in THP-1 Macrophages

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Aspergillus fumigatu (A. fumigatus) is one of the most common important fungal pathogens that cause life-threatening infectious disease in immunocompromised individuals. However, the host immune response against this pathogenic mold is not fully understood. MicroRNAs (miRNAs) play essential roles in regulating innate immunity. Thus, we investigated the function of miR-146a in inflammatory responses in macrophages after A. fumigatus stimulation in this study. We found that TNF-α and IL-6 were increased in THP-1 macrophage-like cells treated with A. fumigatus at both the mRNA and protein levels. The interaction between THP-1 macrophage-like cells and A. fumigatus resulted in a long-lasting increase in miR-146a expression dependent on p38 MAPK and NF-κB signaling. In A. fumigatus-challenged THP-1 macrophage-like cells, overexpression of miR-146a by miR-146a mimics decreased TNF-α and IL-6 production, whereas downregulation of miR-146a by anti-miR-146a significantly enhanced the level of TNF-α and IL-6. Our study demonstrates that the crosstalk between miR-146a and the inflammation-regulating p38 MAPK and NF-κB pathways might be a fine-tuning mechanism in the modulation of the inflammatory response in macrophages infected with A. fumigatus. Our findings illuminate the crucial role of miR-146a in the pathogenesis of human diseases associated with A. fumigatus infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chai LY, et al. Aspergillus fumigatus cell wall components differentially modulate host TLR2 and TLR4 responses. Microbes Infect. 2011;13(2):151–9.

    Article  CAS  PubMed  Google Scholar 

  2. Osherov N. Interaction of the pathogenic mold Aspergillus fumigatus with lung epithelial cells. Front Microbiol. 2012;3:346.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Latge JP. The pathobiology of Aspergillus fumigatus. Trends Microbiol. 2001;9(8):382–9.

    Article  CAS  PubMed  Google Scholar 

  4. Abad A, et al. What makes Aspergillus fumigatus a successful pathogen? Genes and molecules involved in invasive aspergillosis. Rev Iberoam Micol. 2010;27(4):155–82.

    Article  PubMed  Google Scholar 

  5. Steinbach WJ, et al. Clinical epidemiology of 960 patients with invasive aspergillosis from the PATH Alliance registry. J Infect. 2012;65(5):453–64.

    Article  PubMed  Google Scholar 

  6. Patterson KC, Strek ME. Diagnosis and treatment of pulmonary aspergillosis syndromes. Chest. 2014;146(5):1358–68.

    Article  PubMed  Google Scholar 

  7. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36(1):1–53.

    Article  PubMed  Google Scholar 

  8. Segal BH. Aspergillosis. N Engl J Med. 2009;360(18):1870–84.

    Article  CAS  PubMed  Google Scholar 

  9. Brown JS, et al. Signature-tagged and directed mutagenesis identify PABA synthetase as essential for Aspergillus fumigatus pathogenicity. Mol Microbiol. 2000;36(6):1371–80.

    Article  CAS  PubMed  Google Scholar 

  10. Fontaine T, et al. Molecular organization of the alkali-insoluble fraction of aspergillus fumigatus cell wall. J Biol Chem. 2000;275(52):41528.

    Article  CAS  PubMed  Google Scholar 

  11. Bellocchio S, et al. The contribution of the Toll-like/IL-1 receptor superfamily to innate and adaptive immunity to fungal pathogens in vivo. J Immunol. 2004;172(5):3059–69.

    Article  CAS  PubMed  Google Scholar 

  12. Werner JL, et al. Requisite role for the dectin-1 beta-glucan receptor in pulmonary defense against Aspergillus fumigatus. J Immunol. 2009;182(8):4938–46.

    Article  CAS  PubMed  Google Scholar 

  13. Brown GD, Gordon S. Immune recognition A new receptor for beta-glucans. Nature. 2001;413(6851):36–7.

    Article  CAS  PubMed  Google Scholar 

  14. Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol. 2011;14(4):392–9.

    Article  CAS  PubMed  Google Scholar 

  15. Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  16. Saijo S, Iwakura Y. Dectin-1 and Dectin-2 in innate immunity against fungi. Int Immunol. 2011;23(8):467–72.

    Article  CAS  PubMed  Google Scholar 

  17. Gringhuis SI, et al. Selective C-Rel activation via Malt1 controls anti-fungal T(H)-17 immunity by dectin-1 and dectin-2. PLoS Pathog. 2011;7(1):e1001259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farh KK, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310(5755):1817–21.

    Article  CAS  PubMed  Google Scholar 

  19. Taganov KD, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA. 2006;103(33):12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  CAS  PubMed  Google Scholar 

  21. Zhou R, et al. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog. 2009;5(12):e1000681.

    Article  PubMed  PubMed Central  Google Scholar 

  22. O’Neill LA, Sheedy FJ, McCoy CE. MicroRNAs: the fine-tuners of Toll-like receptor signalling. Nat Rev Immunol. 2011;11(3):163–75.

    Article  CAS  PubMed  Google Scholar 

  23. Ma C, et al. microRNA-124 negatively regulates TLR signaling in alveolar macrophages in response to mycobacterial infection. Mol Immunol. 2014;62(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  24. Xu G, et al. MicroRNA-149 negatively regulates TLR-triggered inflammatory response in macrophages by targeting MyD88. J Cell Biochem. 2014;115(5):919–27.

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y, Sun Q, Dai L. Immune regulation of miR-30 on the Mycobacterium tuberculosis-induced TLR/MyD88 signaling pathway in THP-1 cells. Exp Ther Med. 2017;14(4):3299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monk CE, Hutvagner G, Arthur JS. Regulation of miRNA transcription in macrophages in response to Candida albicans. PLoS ONE. 2010;5(10):e13669.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chai LY, et al. Modulation of Toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect Immun. 2009;7:2184–92.

    Article  Google Scholar 

  28. Han HS, et al. Identification of suitable reference genes for the relative quantification of microRNAs in pleural effusion. Oncol Lett. 2014;8(4):1889–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang P, et al. Role of mitogen-activated protein kinases and NF-kappaB in the regulation of proinflammatory and anti-inflammatory cytokines by Porphyromonas gingivalis hemagglutinin B. Infect Immun. 2005;73(7):3990–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rogers NC, et al. Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. Immunity. 2005;22(4):507–17.

    Article  CAS  PubMed  Google Scholar 

  31. Mistry P, et al. Inhibition of TLR2 signaling by small molecule inhibitors targeting a pocket within the TLR2 TIR domain. Proc Natl Acad Sci USA. 2015;112(17):5455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moser VA, Uchoa MF, Pike CJ. TLR4 inhibitor TAK-242 attenuates the adverse neural effects of diet-induced obesity. J Neuroinflammation. 2018;15(1):306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee S, et al. miR-125a-5p regulates differential activation of macrophages and inflammation. J Biol Chem. 2013;288(49):35428–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nahid MA, Satoh M, Chan EK. Mechanistic role of microRNA-146a in endotoxin-induced differential cross-regulation of TLR signaling. J Immunol. 2011;186(3):1723–34.

    Article  CAS  PubMed  Google Scholar 

  35. Saba R, Sorensen DL, Booth SA. MicroRNA-146a: A Dominant, Negative Regulator of the Innate Immune Response. Front Immunol. 2014;5:578.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Du L, et al. MiR-146a negatively regulates dectin-1-induced inflammatory responses. Oncotarget. 2017;8(23):37355–66.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park H, et al. MicroRNA-146a and microRNA-146b regulate human dendritic cell apoptosis and cytokine production by targeting TRAF6 and IRAK1 proteins. J Biol Chem. 2015;290(5):2831–41.

    Article  CAS  PubMed  Google Scholar 

  38. Curtis AM, et al. Circadian control of innate immunity in macrophages by miR-155 targeting Bmal1. Proc Natl Acad Sci U S A. 2015;112(23):7231–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hong J, Zhou W, Wang X. Involvement of miR-455 in the protective effect of H2S against chemical hypoxia-induced injury in BEAS-2B cells. Pathol Res Pract. 2018;214(11):1804–10.

    Article  CAS  PubMed  Google Scholar 

  40. Agustinho DP, et al. Dectin-1 is required for miR155 upregulation in murine macrophages in response to Candida albicans. Virulence. 2017;8(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  41. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801.

    Article  CAS  PubMed  Google Scholar 

  42. Medzhitov R, Janeway C Jr. Innate immunity. N Engl J Med. 2000;343(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  43. Luther K, et al. Phagocytosis of Aspergillus fumigatus conidia by murine macrophages involves recognition by the dectin-1 beta-glucan receptor and Toll-like receptor 2. Cell Microbiol. 2007;9(2):368–81.

    Article  CAS  PubMed  Google Scholar 

  44. Zhao J, Wu XY. Triggering of toll-like receptors 2 and 4 by Aspergillus fumigatus conidia in immortalized human corneal epithelial cells to induce inflammatory cytokines. Chin Med J (Engl). 2008;121(5):450–4.

    Article  CAS  Google Scholar 

  45. Chai LY, et al. Modulation of Toll-like receptor 2 (TLR2) and TLR4 responses by Aspergillus fumigatus. Infect Immun. 2009;77(5):2184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steele C, et al. The beta-glucan receptor dectin-1 recognizes specific morphologies of Aspergillus fumigatus. PLoS Pathog. 2005;1(4):e42.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mambula SS, et al. Toll-like receptor (TLR) signaling in response to Aspergillus fumigatus. J Biol Chem. 2002;277(42):39320–6.

    Article  CAS  PubMed  Google Scholar 

  48. Pylkkanen L, et al. Exposure to Aspergillus fumigatus spores induces chemokine expression in mouse macrophages. Toxicology. 2004;200(2–3):255–63.

    Article  CAS  PubMed  Google Scholar 

  49. Carissimi C, Fulci V, Macino G. MicroRNAs: novel regulators of immunity. Autoimmun Rev. 2009;8(6):520–4.

    Article  CAS  PubMed  Google Scholar 

  50. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136(1):26–36.

    Article  CAS  PubMed  Google Scholar 

  51. Chan EK, Ceribelli A, Satoh M. MicroRNA-146a in autoimmunity and innate immune responses. Ann Rheum Dis. 2013;72(Suppl 2):ii90–5.

    Article  CAS  PubMed  Google Scholar 

  52. Sun W, et al. Selenium suppresses inflammation by inducing microRNA-146a in Staphylococcus aureus-infected mouse mastitis model. Oncotarget. 2017;8(67):110949–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wen Z, et al. Autoantibody induction by DNA-containing immune complexes requires HMGB1 with the TLR2/microRNA-155 pathway. J Immunol. 2013;190(11):5411–22.

    Article  CAS  PubMed  Google Scholar 

  54. Li Z, Cai J, Cao X. MiR-19 suppresses fibroblast-like synoviocytes cytokine release by targeting toll like receptor 2 in rheumatoid arthritis. Am J Transl Res. 2016;8(12):5512–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lippai D, et al. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLoS ONE. 2013;8(8):e70945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kong H, et al. The Effect of miR-132, miR-146a, and miR-155 on MRP8/TLR4-Induced Astrocyte-Related Inflammation. J Mol Neurosci. 2015;57(1):28–37.

    Article  CAS  PubMed  Google Scholar 

  57. Lv YN, Ou-Yang AJ, Fu LS. MicroRNA-27a Negatively Modulates the Inflammatory Response in Lipopolysaccharide-Stimulated Microglia by Targeting TLR4 and IRAK4. Cell Mol Neurobiol. 2017;37(2):195–210.

    Article  CAS  PubMed  Google Scholar 

  58. Xue X, Qiu Y, Yang HL. Immunoregulatory role of MicroRNA-21 in macrophages in response to bacillus calmette-guerin infection involves modulation of the TLR4/MyD88 signaling pathway. Cell Physiol Biochem. 2017;42(1):91–102.

    Article  CAS  PubMed  Google Scholar 

  59. Iyer A, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS ONE. 2012;7(9):e44789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis BP, et al. Prediction of mammalian microRNA targets. Cell. 2003;115(7):787–98.

    Article  CAS  PubMed  Google Scholar 

  61. O’Brien J, et al. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018;9:402.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (No. 81773338, 81773342, 81502739), CAMS Innovation Fund for Medical Sciences (2017-I2M-1-017, 2016-I2M-1-005), “Thirteen Five” Key Medical Talent’s Project in Science and Education of Jiangsu Province (ZDRCB2016010), Jiangsu R&D program social development project (No. BE2015717), Jiang Su National Natural Science Foundation (No. BK20150068, No. BK20190144), PUMC Youth Fund (No. 3332016108).

Author information

Authors and Affiliations

Authors

Contributions

Jianbo Tong and Xu Chen wrote the main manuscript text. Jianbo Tong, Zhimin Duan, Rong Zeng, Leilei Du, Song Xu, Liwei Wang and Yuzhen Liu jointly performed the experiments, prepared all figures and performed statistical analysis in this work. Qing Chen, Xu Chen and Min Li supervised the experimental design and revised manuscript text. Qing Chen, Xu Chen and Min Li are the corresponding authors. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Qing Chen, Xu Chen or Min Li.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Handling Editor: Anamelia Lorenzetti Bocca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 37158 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, J., Duan, Z., Zeng, R. et al. MiR-146a Negatively Regulates Aspergillus fumigatus-Induced TNF-α and IL-6 Secretion in THP-1 Macrophages. Mycopathologia 186, 341–354 (2021). https://doi.org/10.1007/s11046-021-00538-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00538-0

Keywords

Navigation