Skip to main content
Log in

Multimodal ellipsoid model for non-probabilistic structural uncertainty quantification and propagation

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

The traditional ellipsoid convex set is a kind of basic non-probabilistic model to measure uncertainties. However, it is difficult or inaccurate to quantify the uncertainties of variables with multimodal distributed samples. In this paper, a more generalized non-probabilistic ellipsoid model named multimodal ellipsoid model is proposed to effectively deal with the multimodal distributed samples. The samples with one or more similar properties are clustered together, and the principal directions of the samples and characteristic matrix are appropriately found through the Gaussian mixture model. Then, the multimodal ellipsoid model can be constructed by using the elliptical contour features of the Gaussian model to measure the uncertainties of variables. The proposed multimodal ellipsoid model can not only establish traditional ellipsoid model, but also establish multi-ellipsoid model for uncertain variables with multimodal samples. Furthermore, combining with the multimodal ellipsoid model and performance measure approach, the uncertain propagation results of system are obtained accurately. Three numerical examples and one engineering application are provided to demonstrate the effectiveness and accuracy of the proposed multimodal ellipsoid model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

The code that used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ben-Haim, Y.: A non-probabilistic concept of reliability. Struct. Saf. 14(4), 227–245 (1994)

    Article  Google Scholar 

  • Cao, L.X., Liu, J., Han, X., Jiang, C., Liu, Q.M.: An efficient evidence-based reliability analysis method via piecewise hyperplane approximation of limit state function. Struct. Multidiscip. Optim. 58(8), 1–13 (2018)

    MathSciNet  Google Scholar 

  • Cao, L.X., Liu, J., Jiang, C., Wu, Z.T., Zhang, Z.: Evidence-based structural uncertainty quantification by dimension reduction decomposition and marginal interval analysis. J. Mech. Des. (2020). https://doi.org/10.1115/1.4044915

    Article  Google Scholar 

  • Celeux, G., Govaert, G.: Gaussian parsimonious clustering models. Pattern Recogn. 28(5), 781–793 (1995)

    Article  Google Scholar 

  • Chen, N., Yu, D., Xia, B., Beer, M.: Uncertainty analysis of a structural–acoustic problem using imprecise probabilities based on p-box representations. Mech. Syst. Signal Process. 80, 45–57 (2016)

    Article  Google Scholar 

  • Chowdhury, R., Rao, B.N.: Hybrid high dimensional model representation for reliability analysis. Comput. Methods Appl. Mech. Eng. 198(5–8), 753–765 (2009)

    Article  MATH  Google Scholar 

  • Degrauwe, D., Lombaert, G., De Roeck, G.: Improving interval analysis in finite element calculations by means of affine arithmetic. Comput. Struct. 88(3–4), 247–254 (2010)

    Article  Google Scholar 

  • Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Statist. Soc. Ser. B (methodological) 39, 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  • Deng, L., Hinton, G., Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: An overview. In: Proceedings of the acoustics, speech and signal processing (ICASSP). IEEE International Conference, pp. 8599–8603 (2013)

  • Du, X., Sudjianto, A., Huang, B.: Reliability-based design with the mixture of random and interval variables. J. Mech. Des. 127(6), 1068–1076 (2005)

    Article  Google Scholar 

  • Du, X., Chen, W.: A Methodology for managing the effect of uncertainty in simulation-based design. AIAA J. 38(8), 1471–1485 (2000)

    Article  Google Scholar 

  • Dubois, D., Prade, H.: Fuzzy sets, probability and measurement. Eur. J. Oper. Res. 40(2), 135–154 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  • Elishakoff, I., Sarlin, N.: Uncertainty quantification based on pillars of experiment, theory, and computation. Part II: Theory and computation. Mech. Syst. Signal Process. 74, 54–72 (2016)

    Article  Google Scholar 

  • Er, G.K.: Crossing rate analysis with a non-Gaussian closure method for nonlinear stochastic systems. Nonlinear Dyn. 14(3), 279–291 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Er, G.K.: Multi-gaussian closure method for randomly excited non-linear systems. Int. J. Non-Linear Mech. 33(33), 201–214 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Ferson, S., Ginzburg, L., Kreinovich, V., Longpré, L., Aviles, M.: Computing variance for interval data is NP-hard. ACM SIGACT News 33(2), 108–118 (2002)

    Article  Google Scholar 

  • Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? Answers via model-based cluster analysis. Comput. J. 41(8), 578–588 (1998)

    Article  MATH  Google Scholar 

  • Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1–2), 177–196 (2001)

    Article  MATH  Google Scholar 

  • Jiang, C., Han, X.: A new uncertain optimization method based on intervals and an approximation management model. Comput. Model. Eng. Sci. 22(2), 97 (2007)

    MathSciNet  MATH  Google Scholar 

  • Jiang, C., Han, X., Guan, F., Li, Y.H.: An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method. Eng. Struct. 29(11), 3168–3177 (2007a)

    Article  Google Scholar 

  • Jiang, C., Han, X., Liu, G.: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Comput. Methods Appl. Mech. Eng. 196(49–52), 4791–4800 (2007b)

    Article  MATH  Google Scholar 

  • Jiang, C., Han, X., Liu, G.R., Liu, G.P.: A nonlinear interval number programming method for uncertain optimization problems. Eur. J. Oper. Res. 188(1), 1–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, C., Han, X., Lu, G., Liu, J., Zhang, Z., Bai, Y.C.: Correlation analysis of non-probabilistic convex model and corresponding structural reliability technique. Comput. Methods Appl. Mech. Eng. 200(33–36), 2528–2546 (2011)

    Article  MATH  Google Scholar 

  • Kadapa, C., Dettmer, W., Perić, D.: A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-Spline grids. Comput. Methods Appl. Mech. Eng. 301, 1–27 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, Z., Luo, Y.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput. Methods Appl. Mech. Eng. 198(41–44), 3228–3238 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Kang, Z., Zhang, W.: Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data. Comput. Methods Appl. Mech. Eng. 300, 461–489 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Kanungo, T., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 7, 881–892 (2002)

    Article  Google Scholar 

  • Kass, R.E.: Nonlinear regression analysis and its applications. J. Am. Stat. Assoc. 85(410), 594–596 (1990)

    Article  Google Scholar 

  • Klir, G.J.: Generalized information theory: aims, results, and open problems. Reliab. Eng. Syst. Saf. 85(1–3), 21–38 (2004)

    Article  Google Scholar 

  • Kumar, P., Yildirim, E.A.: Minimum-volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 126(1), 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C., Sanchez, R., Zurita, G., Cerrada, M., Cabrera, D., Vásquez, R.: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals. Mech. Syst. Signal Process. 76, 283–293 (2016)

    Article  Google Scholar 

  • Li, Y., Wang, X., Wang, C., Xu, M., Wang, L.: Non-probabilistic Bayesian update method for model validation. Appl. Math. Model. 58, 388–403 (2018)

    Article  MATH  Google Scholar 

  • Liu, J., Sun, X.S., Han, X.: Dynamic load identification for stochastic structures based on Gegenbauer polynomial approximation and regularization method. Mech. Syst. Signal Process. 56–57(may), 35–54 (2015)

    Article  Google Scholar 

  • Liu, J., Meng, X.H., Xu, C.: Forward and inverse structural uncertainty propagations under stochastic variables with arbitrary probability distributions. Comput. Methods Appl. Mech. Eng. 342, 287–320 (2018a)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Cai, H., Jiang, C., Han, X., Zhang, Z.: An interval inverse method based on high dimensional model representation and affine arithmetic. Appl. Math. Model. 63, 732–743 (2018b)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Cao, L., Jiang, C., Ni, B.Y., Zhang, D.: Parallelotope-formed evidence theory model for quantifying uncertainties with correlation. Appl. Math. Model. 77, 32–48 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, J., Liu, H., Jiang, C., Han, X., Hu, Y.F.: A new measurement for structural uncertainty propagation based on pseudo-probability distribution. Appl. Math. Model. 63, 744–760 (2018c)

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, Y., Kang, Z., Luo, Z., Li, A.: Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model. Struct. Multidiscip. Optim. 39(3), 297–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Mcnicholas, P.D., Murphy, T.B.: Parsimonious Gaussian mixture models. Stat. Comput. 18(3), 285–296 (2008)

    Article  MathSciNet  Google Scholar 

  • Meng, X., Liu, J., Cao, L., Yu, Z., Yang, D.: A general frame for uncertainty propagation under multimodally distributed random variables. Computer Method. Appl. Mech. Eng. 367, 113109 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, Z., Zhou, H., Li, G., Yang, D.: A decoupled approach for non-probabilistic reliability-based design optimization. Comput. Struct. 175, 65–73 (2016)

    Article  Google Scholar 

  • Meng, Z., Yang, D.X., Zhou, H.L., Wang, B.P.: Convergence control of single loop approach for reliability-based design optimization. Struct. Multidiscip. Optim. 57(3), 1079–1091 (2017)

    Article  MathSciNet  Google Scholar 

  • Meng, Z., Li, G., Yang, D., Zhan, L.: A new directional stability transformation method of chaos control for first order reliability analysis. Struct. Multidiscip. Optim. 55(2), 601–612 (2017)

    Article  MathSciNet  Google Scholar 

  • Meng, Z., Hu, H., Zhou, H.: Super parametric convex model and its application for non-probabilistic reliability-based design optimization. Appl. Math. Model. 55, 354–370 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Meng, Z., Zhang, Z., Zhou, H.: A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters. Appl. Math. Model. 77, 773–787 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  • Moore. R.E.: Methods and applications of interval analysis. Siam Studies in Applied Mathematics (1979)

  • Pouresmaeeli, S., Fazelzadeh, S.A., Ghavanloo, E.: Uncertainty propagation in vibrational characteristics of functionally graded carbon nanotube-reinforced composite shell panels. Int. J. Mech. Sci. 149(8), 549–558 (2018)

    Article  MATH  Google Scholar 

  • Qiu, Z., Wang, X.: Comparison of dynamic response of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach. Int. J. Solids Struct. 40(20), 5423–5439 (2003)

    Article  MATH  Google Scholar 

  • Qiu, Z., Wang, X.: Two non-probabilistic set-theoretical models for dynamic response and buckling failure measures of bars with unknown-but-bounded initial imperfections. Int. J. Solids Struct. 42(3–4), 1039–1054 (2005)

    Article  MATH  Google Scholar 

  • Qiu, Z., Wang, X.: Parameter perturbation method for dynamic responses of structures with uncertain-but-bounded parameters based on interval analysis. Int. J. Solids Struct. 42(18–19), 4958–4970 (2005)

    Article  MATH  Google Scholar 

  • Qiu, Z., Wang, X., Friswell, M.I.: Eigenvalue bounds of structures with uncertain-but-bounded parameters. J. Sound Vib. 282(1–2), 297–312 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, Y., Lu, Z., Zhou, Y.: Time-dependent safety and sensitivity analysis for structure involving both random and fuzzy inputs. Struct. Multidiscip. Optim. 58(6), 2655–2675 (2018)

    Article  MathSciNet  Google Scholar 

  • Simoen, E., Roeck, G., Lombaert, G.: Dealing with uncertainty in model updating for damage assessment: a review. Mech. Syst. Signal Process. 56, 123–149 (2015)

    Article  Google Scholar 

  • Truong, V., Liu, J., Meng, X., Jiang, C., Nguyen, T.: Uncertainty analysis on vehicle-bridge system with correlative interval variables based on multidimensional parallelepiped model. Int. J. Computat. Methods. 36, 1850030 (2017)

    MathSciNet  MATH  Google Scholar 

  • Tu, J., Choi, K.K., Park, Y.: A new study on reliability-based design optimization. J. Mech. Des. 121(4), 557–564 (1999)

    Article  Google Scholar 

  • Wang, L., Wang, X., Li, Y., Hu, J.: A non-probabilistic time-variant reliable control method for structural vibration suppression problems with interval uncertainties. Mech. Syst. Signal Process. 115, 301–322 (2019)

    Article  Google Scholar 

  • Wang, X., Qiu, Z., Elishakoff, I.: Non-probabilistic set-theoretic model for structural safety measure. Acta Mech. 198(1–2), 51–64 (2008)

    Article  MATH  Google Scholar 

  • Wei, X., Du, X.: Robustness metric for robust design optimization under time-and space-dependent uncertainty through metamodeling. J. Mech. Des. 142(3), 031110 (2020)

    Article  Google Scholar 

  • Wu, J., Zhang, D., Liu, J., Han, X.: A moment approach to positioning accuracy reliability analysis for industrial robots. IEEE Trans. Reliab. 99, 1–16 (2019)

    Google Scholar 

  • Xiao, Z., Han, X., Jiang, C., Yang, G.: An efficient uncertainty propagation method for parameterized probability boxes. Acta Mech. 227(3), 633–649 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Youn, B.D., Choi, K.K.: An investigation of nonlinearity of reliability-based design optimization approaches. J. Mech. Des. 126(3), 403–411 (2004)

    Article  Google Scholar 

  • Zeng, M., Zhou, H.: New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization. Comput. Methods Appl. Mech. Eng. 339, 644–662 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, D., Han, X., Jiang, C.: Time-dependent reliability analysis through response surface method. J. Mech. Des. 139(4), 041404 (2017)

    Article  Google Scholar 

  • Zhang, D., Han, X.: Kinematic reliability analysis of robotic manipulator. J. Mech. Des. 142(4), 044502 (2020)

    Article  Google Scholar 

  • Zhang, Z., Jiang, C., Han, X., Ruan, X.: A high-precision probabilistic uncertainty propagation method for problems involving multimodal distributions. Mech. Syst. Signal Process. 126(1), 21–41 (2019)

    Article  Google Scholar 

  • Zhu, L., Elishakoff, I., Starnes, J., Jr.: Derivation of multi-dimensional ellipsoidal convex model for experimental data. Math. Comput. Model. 24(2), 103–114 (1996)

    Article  MATH  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (Grant No. 51975199, 11811530285), and the independent research project of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University (Grant No. 71865010).

Author information

Authors and Affiliations

Authors

Contributions

JL Conceptualizaion, Methodology. ZY Methodology, Investigation, Writing-Reviewing and Editing. DZ Supervision, Validation. HL Writing- Original draft preparation. XH Conceptualizaion. All authors contributed to writing or correcting the article.

Corresponding author

Correspondence to Jie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables

Table 6 Samples on the uncertainty for numerical example 1

6,

Table 7 Samples on the uncertainty for numerical example 2

7,

Table 8 Samples on the uncertainty for numerical example 3

8, and

Table 9 Samples on the uncertainty for numerical example 4

9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yu, Z., Zhang, D. et al. Multimodal ellipsoid model for non-probabilistic structural uncertainty quantification and propagation. Int J Mech Mater Des 17, 633–657 (2021). https://doi.org/10.1007/s10999-021-09551-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-021-09551-z

Keywords

Navigation