Skip to main content
Log in

An Insight into Formation and Characterization of Nano-Cellulose Prepared From Industrial Cellulosic Wastes

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Cellulose is naturally available most abundant biopolymer. Most of research has been focusing of extraction of cellulosic material from natural sources and waste sources. These waste sources are of two types: industrial waste and non-industrial wastes. However, industrial wastes are grabbing more interest as these could be available in enormous quantity, reduce environment pollution and also benefit commercially. To address this subject, in the present work, we have successfully converted the cellulosic wastes from viscose industry to high value materials such as Micro-crystalline cellulose (MCC) and Nanocrystalline cellulose (NCC). Furthermore, an important correlation between yield and crystallinity of produced NCC to molecular weight of cellulosic raw material was established. The above finding was characterized by different characterization techniques, such as Zeta sizer, Zeta potential and Scanning Electron Microscopy (SEM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gupta A, Turner S (2017) Cellulose. In: Gupta A, Turner SR (eds) Encyclopedia of Applied Plant Sciences. Elsevier, Amsterdam, pp 185–190

    Chapter  Google Scholar 

  2. Shabbir M, Mohammad F (2017) Sustainable production of regenerated cellulosic fibres. In: Shabbir M, Mohammad F (eds) Sustainable Fibres and Textiles. Elsevier, Amsterdam, pp 171–189

    Chapter  Google Scholar 

  3. Macfarlane C, Warren CR, White DA, Adams MA (1999) A rapid and simple method for processing wood to crude cellulose for analysis of stable carbon isotopes in tree rings. Tree Physiol 19:831–835. https://doi.org/10.1093/treephys/19.12.831

    Article  CAS  PubMed  Google Scholar 

  4. Hasan HR, MHS (2014) Novel method for extraction of cellulose from agricultural and industrial wastes Hathama. Chem Technol An Indian J 9:148–153. https://doi.org/10.1039/b816298k

    Article  CAS  Google Scholar 

  5. Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agriculture and industrial waste in the field of nano cellulose and its recent industrial developments: a review. ACS Sustain Chem Eng 6:2807–2828. https://doi.org/10.1021/acssuschemeng.7b03437

    Article  CAS  Google Scholar 

  6. Mishra S, Kharkar PS, Pethe AM (2019) Biomass and waste materials as potential sources of nanocrystalline cellulose : Comparative review of preparation methods (2016 – Till date ). Carbohydr Polym 207:418–427. https://doi.org/10.1016/j.carbpol.2018.12.004

    Article  CAS  PubMed  Google Scholar 

  7. Asim M (2017) Nanocellulose: preparation method and applications. In: Jawaid M, Boufi S (eds) Cellulose-Reinforced Nanofibre Composites. Elsevier, Amsterdam, pp 261–276

    Google Scholar 

  8. Impoolsup T, Chiewchan N, Devahastin S (2020) On the use of microwave pretreatment to assist zero-waste chemical-free production process of nanofibrillated cellulose from lime residue. Carbohydr Polym 230:115630. https://doi.org/10.1016/j.carbpol.2019.115630

    Article  CAS  PubMed  Google Scholar 

  9. Gong J, Li J, Xu J (2017) Research on cellulose nanocrystals produced from cellulose sources with various polymorphs. RSC Adv 7:33486–33493. https://doi.org/10.1039/C7RA06222B

    Article  CAS  Google Scholar 

  10. Ioelovich M (2012) Optimal Conditions for Isolation of Nanocrystalline Cellulose Particles. Nanosci Nanotechnol 2:9–13. https://doi.org/10.5923/j.nn.20120202.03

    Article  CAS  Google Scholar 

  11. Mahardika M, Abral H, Kasim A et al (2018) Production of nanocellulose from pineapple leaf fibers via high-shear homogenization and ultrasonication. Fibers 6:1–12. https://doi.org/10.3390/fib6020028

    Article  CAS  Google Scholar 

  12. Ma Y, Xia Q, Liu Y et al (2019) Production of Nanocellulose Using Hydrated Deep Eutectic Solvent Combined with Ultrasonic Treatment. ACS Omega 4:8539–8547. https://doi.org/10.1021/acsomega.9b00519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896. https://doi.org/10.1007/s10570-013-0030-4

    Article  CAS  Google Scholar 

  14. Terinte N, Ibbett R, Schuster KC (2011) Overview on Native Cellulose and Microcrystalline Cellulose I Structure Studied By X-Ray Diffraction (Waxd): Comparison Between Measurement Techniques. Lenzinger Berichte 89:118–131. https://doi.org/10.1163/156856198X00740

    Article  CAS  Google Scholar 

  15. Yan L, Zhao Y, Gu Q, Li W (2012) Isolation of highly purity cellulose from wheat straw using a modified aqueous biphasic system. Front Chem Sci Eng 6:282–291. https://doi.org/10.1007/s11705-012-0901-5

    Article  CAS  Google Scholar 

  16. Trilokesh C, Uppuluri KB (2019) Isolation and characterization of cellulose nanocrystals from jackfruit peel. Sci Rep 9:1–8. https://doi.org/10.1038/s41598-019-53412-x

    Article  CAS  Google Scholar 

  17. Kreze T, Strnad S, Stana-Kleinschek K, Ribitsch V (2001) Influence of aqueous medium on mechanical properties of conventional and new environmentally friendly regenerated cellulose fibers. Mater Res Innov 4:107–114

    Article  CAS  Google Scholar 

  18. Rathoda M, Moradeeyab PG, Haldarc S, Basha S (2018) Nanocellulose/TiO2 composites: Preparation, characterization and application in photocatalytic degradation of a potential endocrine disruptor, mefanamic acid, from aqueous media. Photochem Photobiol Sci 17:1301–1309. https://doi.org/10.1039/C8PP00156A

    Article  Google Scholar 

  19. Naduparambath S, Jinitha TV, Shaniba V et al (2017) Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr Polym 180:13–20. https://doi.org/10.1016/j.carbpol.2017.09.088

    Article  CAS  PubMed  Google Scholar 

  20. Lian YL, Li G, Zou Y, Qingjun Zhou X (2014) Preparation and characterization of cellulose nanofibers from partly mercerized cotton by mixed acid hydrolysis. Cellulose 21:301–309. https://doi.org/10.1007/s10570-013-0146-6

    Article  CAS  Google Scholar 

  21. Sosiati H, Wijayanti DA, Triyana K, Kamiel B (2018) Morphology and crystallinity of sisal nanocellulose after sonication Morphology and Crystallinity of Sisal Nanocellulose after Sonication. In: AIP Conference Proceedings. p 105

  22. Tshabalala YP· DJG· YH· AK· ZC· MA, (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  Google Scholar 

  23. Zhang S, Zhang F, Jin L et al (2019) Preparation of spherical nanocellulose from waste paper by aqueous NaOH/thiourea. Cellulose 26:5177–5185. https://doi.org/10.1007/s10570-019-02434-9

    Article  CAS  Google Scholar 

  24. Nilsson C (2017) Preparation and characterization of nanocellulose from wheat bran. Lund University

  25. Kaur M, Kumari S, Sharma P (2018) Chemically Modified Nanocellulose from Rice Husk : Synthesis and Characterisation. Adv Res 13:1–11. https://doi.org/10.9734/AIR/2018/38934

    Article  Google Scholar 

  26. Du L, Wang J, Zhang Y et al (2017) Preparation and characterization of cellulose nanocrystals from the bio-ethanol residuals. Nanomaterials 7:1–12. https://doi.org/10.3390/nano7030051

    Article  CAS  Google Scholar 

  27. Mandal A, Chakrabarty D (2011) Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr Polym 86:1291–1299. https://doi.org/10.1016/j.carbpol.2011.06.030

    Article  CAS  Google Scholar 

  28. Gong J, Mo L, Li J (2018) A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs. Carbohydr Polym 195:18–28. https://doi.org/10.1016/j.carbpol.2018.04.039

    Article  CAS  PubMed  Google Scholar 

  29. Ogundare SA, Moodley V, Van ZWE (2017) Nanocrystalline cellulose isolated from discarded cigarette filters. Carbohydr Polym 175:273–281. https://doi.org/10.1016/j.carbpol.2017.08.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors duly acknowledge support of Pulp & Fibre Innovation Centre (Grasim Industries) for providing required resources and Aditya Birla Science and Technology Centre for supporting in analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Mhaske.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodake, V.B., Khare, R.A. & Mhaske, S.T. An Insight into Formation and Characterization of Nano-Cellulose Prepared From Industrial Cellulosic Wastes. J Polym Environ 30, 319–332 (2022). https://doi.org/10.1007/s10924-020-02026-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-02026-w

Keywords

Navigation