Skip to main content

Advertisement

Log in

Spatiotemporal evolution of submesoscale filaments at the periphery of an anticyclonic mesoscale eddy north of the Kuroshio Extension

  • Original Article
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Five high-resolution hydrographic sections were conducted at the periphery of an anticyclonic mesoscale eddy north of the Kuroshio Extension (KE) to explore the evolution of submesoscale structure in the subsurface layer associated with mesoscale eddies. The five sections continuously captured patches of low temperature and salinity water originated from the subarctic region with a horizontal scale of 10–20 km and a vertical scale of 100 m in the strain field at the periphery and in the interior of the eddy detected mainly by the surface Okubo-Weiss parameter. Each patch on the same isopycnal constituted a submesoscale filament. A cold and fresh filament in the intermediate layer in and around the eddy was recently ventilated compared with ambient water, suggesting that submesoscale filaments contribute to a rapid water mass transport from the outside to the inside of the eddy, as well as from the subarctic to the KE region. Filaments at the periphery of the eddy were forced by the convergence in the cross-frontal direction. The horizontal tracer gradient of the filaments evolved in the downstream direction, and 10–50% of the evolution was explained by geostrophic forcing. Moreover, the analysis implied that the evolution of the vertical tracer gradient might have been caused by the vertical shear of the horizontal velocity. The resulting patches were expected to contribute to an effective mixing, suggesting the influence of submesoscale filaments on not only the water mass transport but also the transformation in and around mesoscale eddies in the KE region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008a) Mesoscale to submesoscale transition in the California current system. Part II: Frontal Processes. J Phys Oceanogr 38:44–64. https://doi.org/10.1175/2007JPO3672.1

    Article  Google Scholar 

  • Capet X, McWilliams JC, Molemaker MJ, Shchepetkin AF (2008b) Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and Flux. J Phys Oceanogr 38:2256–2269. https://doi.org/10.1175/2008JPO3810.1

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelon RM, de Szoeke RA (2007) Global observations of large oceanic eddies. Geophys Res Lett 34:L15606. https://doi.org/10.1029/2007GL030812

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2011) Global observations of nonlinear mesoscale eddies. Prog Oceanogr 91:167–216. https://doi.org/10.1016/j.pocean.2011.01.002

    Article  Google Scholar 

  • D’Asaro EA, Lee C, Rainville L, Harcourt R, Thomas LN (2011) Enhanced turbulence and energy dissipation at ocean fronts. Science 332:318–322

    Article  Google Scholar 

  • Ducet N, Le Traon PY, Reverdin F (2000) Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2. J Geophys Res 105:19477–19498

    Article  Google Scholar 

  • Flament P (2002) A state variable for characterizing water masses and their diffusive stability: Spiciness. Prog Oceanogr 54:493–501

    Article  Google Scholar 

  • Gilcoto M, Jones E, Fariña-Busto L (2009) Robust estimations of current velocities with four-beam broadband ADCPs. J Atmos Oceanic Technol 26(12):2642–2654

    Article  Google Scholar 

  • Gula J, Molemaker MJ, McWilliams JC (2014) Submesoscale cold filaments in the Gulf Stream. J Phys Oceanogr 44:2617–2643. https://doi.org/10.1175/JPO-D-14-0029.1

    Article  Google Scholar 

  • Hanawa K (1987) Interannual variations of the winter-time outcrop area of subtropical mode water in the western North Pacific Ocean. Atmos Ocean 25(4):358–374. https://doi.org/10.1080/07055900.1987.9649280

    Article  Google Scholar 

  • Hasunuma K (1978) Formation of the intermediate salinity minimum in the North western Pacific Ocean. Bull Ocean Res Inst Univ Tokyo 9:448–465

    Google Scholar 

  • Hiroe Y, Yasuda I, Komatsu K, Kawasaki K, Joyce TM, Bahr F (2002) Transport of North Pacific intermediate water in the Kuroshio-Oyashio inter-frontal zone. Deep-Sea Res II 49:5353–5364

    Article  Google Scholar 

  • Hoskins BJ (1982) The mathematical theory of frontogenesis. Ann Rev Fluid Mech 14:131–151

    Article  Google Scholar 

  • Itoh S, Sugimoto T (2002) Direct current measurements off Sanriku, east of Japan. J Oceanogr 58:877–882

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010a) Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. J Phys Oceanogr 40:1018–1034. https://doi.org/10.1175/2009JPO4265.1

    Article  Google Scholar 

  • Itoh S, Yasuda I (2010b) Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. J Phys Oceanogr 40:2624–2642. https://doi.org/10.1175/2010JPO4475.1

    Article  Google Scholar 

  • Joyce TM (1989) On in situ “calibration” of shipboard ADCPs. J Atmos Oceanic Technol 6:169–172

    Article  Google Scholar 

  • Kaneko H, Yasuda I, Komatsu K, Itoh S (2012) Observation of the structure of turbulent mixing across the Kuroshio. Geophys Res Lett 39:L15602

    Article  Google Scholar 

  • Kaneko H, Yasuda I, Komatsu K, Itoh S (2013) Observations of vertical turbulent nitrate flux across the Kuroshio. Geophys Res Lett 40:3123–3127

    Article  Google Scholar 

  • Kawaguchi Y, Wagawa T, Igeta Y (2020) Near-inertial internal waves and multiple-internal oscillations trapped by negative vorticity anomaly in the central Sea of Japan. Prog Oceanogr 181:102240

    Article  Google Scholar 

  • Kawaguchi Y, Wagawa T, Yabe I, Ito D, Senjyu T, Itoh S, Igeta Y (2021) Mesoscale-dependent near-inertial internal waves and microscale turbulence in the Tsushima Warm Current. J Oceanogr. https://doi.org/10.1007/s10872-020-00583-1

    Article  Google Scholar 

  • Kawamura H, Mizuno K, Toba Y (1986) Formation process of a warm-core ring in the Kuroshio-Oyashio frontal zone––December 1981–October 1982. Deep-Sea Res 33:1617–1640

    Article  Google Scholar 

  • Kida S, Mitsudera H, Aoki S, Guo X, Ito S, Kobashi F, Komori N, Kubokawa A, Miyama T, Morie R, Nakamura H, Nakamura T, Nakano H, Nishigaki H, Nonaka M, Sasaki H, Sasaki YN, Suga T, Sugimoto S, Taguchi B, Takaya K, Tozuka T, Tsujino H, Usui N (2015) Oceanic fronts and jets around Japan: a review. J Oceanogr 71:469–497. https://doi.org/10.1007/s10872-015-0283-7

    Article  Google Scholar 

  • Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375. https://doi.org/10.1146/annurev.marine.010908.163704

    Article  Google Scholar 

  • Klein P, Treguier A, Hua BL (1998) Three-dimensional stirring of thermohaline fronts. J Mar Res 56:589–612

    Article  Google Scholar 

  • Kouketsu S, Yasuda I, Hiroe Y (2005) Observation of frontal waves and associated salinity minimum formation along the Kuroshio Extension. J Geophys Res 110:C08011. https://doi.org/10.1029/2004JC002862

    Article  Google Scholar 

  • Kouketsu S, Yasuda I, Hiroe Y (2007) Three-dimensional structure of frontal waves and associated salinity minimum formation along the Kuroshio Extension. J Phys Oceanogr 37:644–656

    Article  Google Scholar 

  • Kunze E (1985) Near-inertial wave propagation in geostrophic shear. J Phys Oceanogr 15:544–565

    Article  Google Scholar 

  • Kunze E, Schmitt R, Toole JM (1995) The energy balance in a warm-core ring’s near inertial critical layer. J Phys Oceanogr 25:942–957

    Article  Google Scholar 

  • Legal C, Klein P, Treguier A (2007) Diagnosis of vertical motions in a mesoscale stirring region. J Phys Oceanogr 37:1413–1424. https://doi.org/10.1175/JPO3053.1

    Article  Google Scholar 

  • Lévy M, Ferrari R, Franks PJS, Martin AP, Rivère P (2012) Bringing physics to life at the submesoscale. Geophys Res Lett 39:L14602. https://doi.org/10.1029/2012GL052756

    Article  Google Scholar 

  • Mahadevan A (2016) The impact of submesoscale physics on primary productivity of plankton. Annu Rev Mar Sci 8:161–184. https://doi.org/10.1146/annurev-marine-010814-015912

    Article  Google Scholar 

  • Masujima M, Yasuda I, Hiroe Y, Watanabe T (2003) Transport of Oyashio water across the Subarctic Front into the mixed water region and formation of NPIW. J Oceanogr 59:855–869

    Article  Google Scholar 

  • Masuzawa J (1969) Subtropical Mode Water Deep. Sea Res 16:463–472

    Google Scholar 

  • McWilliams JC (2016) Submesoscale currents in the ocean. Proc Roy Soc A 472:1–32. https://doi.org/10.1098/rspa.2016.0117

    Article  Google Scholar 

  • McWilliams JC, Colas F, Molemaker MJ (2009) Cold filamentary intensification and oceanic surface convergence lines. Geophys Res Lett 36:L18602. https://doi.org/10.1029/2009GL039402

    Article  Google Scholar 

  • Miller JE (1948) On the concept of frontogenesis. J Meteor 5:169–171

    Article  Google Scholar 

  • Mitsudera H, Taguchi B, Yoshikawa Y, Nakamura H, Waseda T, Qu T (2004) Numerical study on the Oyashio water pathways in the Kuroshio-Oyashio confluence. J Phys Oceanogr 34:1174–1196

    Article  Google Scholar 

  • Mizuno K (1985) Some examples of short term fluctuations in the Kuroshio Extension detected by IR imagery. Bull Tohoku Reg Fish Res Lab 47:59–68

    Google Scholar 

  • Munk W, Armi L, Fischer K, Zachariasen F (2000) Spirals on the sea. Proc R Soc A 456:1217–1280. https://doi.org/10.1098/rspa.2000.0560

    Article  Google Scholar 

  • Nagai T, Clayton S (2017) Nutrient interleaving below the mixed layer of the Kuroshio Extension Front. Ocean Dyn 67:1027–1046

    Article  Google Scholar 

  • Nagai T, Tandon A, Yamazaki H, Doubell MJ (2009) Evidence of enhanced turbulent dissipation in the frontogenetic Kuroshio Front thermocline. Geophys Res Lett 36:L12609. https://doi.org/10.1029/2009GL038832

    Article  Google Scholar 

  • Nagai T, Hasegawa D, Tanaka T, Nakamura H, Tsutsumi E, Inoue R, Yamashiro T (2017) First evidence of coherent bands of strong turbulent layers associated with high-wavenumber internal-wave shear in the upstream Kuroshio. Sci Rep 7:14555. https://doi.org/10.1038/s41598-017-15167-1

    Article  Google Scholar 

  • Nagai T, Durán GS, Otero DA, Mori Y, Yoshie N, Ohgi K, Hasegawa D, Nishina A, Kobari T (2019) How the Kuroshio current delivers nutrients to sunlit layers on the continental shelves with aid of near-internal waves and turbulence. Geophys Res Lett 46:6726–6735. https://doi.org/10.1029/2019GL082680

    Article  Google Scholar 

  • Oka E, Suga T (2005) Differential formation and circulation of North Pacific Central Mode Water. J Phys Oceanogr 35:1997–2011

    Article  Google Scholar 

  • Oka E, Suga T, Sukigara C, Toyama K, Shimada K, Yoshida J (2011) “Eddy Resolving” observation of the North Pacific Subtropical Mode Water. J Phys Oceanogr 41:666–681

    Article  Google Scholar 

  • Oka E, Kouketsu S, Yanagimoto D, Ito D, Kawai Y, Sugimoto S, Qiu B (2020) Formation of Central Mode Water based on two zonal hydrographic sections in spring 2013 and 2016. J Oceanogr 76:373–388 

    Article  Google Scholar 

  • Okubo A (1970) Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences. Deep-Sea Res 17:445–454

    Google Scholar 

  • Okuda K, Yasuda I, Hiroe Y, Shimizu Y (2001) Structure of subsurface intrusion of the Oyashio water into the Kuroshio Extension and formation process of the North Pacific Intermediate Water. J Oceanogr 57:121–140

    Article  Google Scholar 

  • Perruche C, Rivière P, Lapeyre G, Carton X, Pondaven P (2011) Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence. J Mar Res 69:105–135

    Article  Google Scholar 

  • Pollard RT, Regier LA (1992) Vorticity and vertical circulation at an ocean front. J Phys Oceanogr 22:609–625

    Article  Google Scholar 

  • Sasaki H, Klein P (2012) SSH wavenumber spectra in the North Pacific from a high-resolution realistic simulation. J Phys Oceanogr 42:1233–1241. https://doi.org/10.1175/JPO-D-11-0180.1

    Article  Google Scholar 

  • Sasaki H, Klein P, Qiu B, Sasai Y (2014) Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nat Commun 5:5636. https://doi.org/10.1038/ncomms6636

    Article  Google Scholar 

  • Shimizu Y, Yasuda I, Ito S (2001) Distribution and circulation of the coastal Oyashio intrusion. J Phys Oceanogr 31:1561–1578

    Article  Google Scholar 

  • Smith KM, Hamlington PE, Fox-Kemper B (2016) Effects of submesoscale turbulence on ocean tracers. J Geophys Res Oceans 121:908–933. https://doi.org/10.1002/2015JC011089

    Article  Google Scholar 

  • Suga T, Hanawa K (1990) The mixed layer climatology in the northwestern part of the North Pacific subtropical gyre and the formation areas of Subtropical Mode Water. J Mar Res 48:543–566

    Article  Google Scholar 

  • Suga T, Hanawa K, Toba Y (1989) Subtropical mode water in the 137°E section. J Phys Oceanogr 19:1605–1618

    Article  Google Scholar 

  • Sugimoto T, Tameishi H (1992) Warm-core rings, streamers and their role on the fishing ground formation around Japan. Deep-Sea Res Part A 39:S183–S201

    Article  Google Scholar 

  • Sugimoto T, Kawasaki Y, Li J (1992) A description of the time-dependent hydrographic structure of the warm streamer around the Kuroshio warm-core ring 86B. Deep-Sea Res 39:S77–S96

    Article  Google Scholar 

  • Talley LD (1993) Distribution and formation of North Pacific Intermediate Water. J Phy Oceanogr 23:517–537

    Article  Google Scholar 

  • Tandon A, Nagai T (2019) Mixing associated with submesoscale processes. In: Cochran JK, Bokuniewicz JH, Yager LP (eds) Encyclopedia of Ocean Science 3rd edition 3: 567–577

    Book  Google Scholar 

  • Thomas LN, Joyce TM (2010) Subduction on the northern and southern flanks of the Gulf Stream. J Phys Oceanogr 40:429–438. https://doi.org/10.1175/2009JPO4187.1

    Article  Google Scholar 

  • Thomas LN, Tandon A, Mahadevan A (2008) Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime, Geophys Monogr Ser 177:17–38

    Article  Google Scholar 

  • Thomas LN, Taylor JR, Ferrari R, Joyce TM (2013) Symmetric instability in the Gulf Stream. Deep Sea Res 91:96–110

    Article  Google Scholar 

  • Thomas LN, Taylor JR, D’Asaro EA, Lee CM, Klymak JM, Shcherbina AY (2016) Symmetric instability, inertial oscillations, and turbulence at the Gulf Stream front. J Phys Oceanogr 46:197–217. https://doi.org/10.1175/JPO-D-15-0008.1

    Article  Google Scholar 

  • Weiss J (1991) The dynamics of enstrophy transfer in two-dimensional hydrodynamics. Physica D 48:273–294

    Article  Google Scholar 

  • Yasuda I (1997) The origin of North Pacific Intermediate Water. J Geophys Res 102(C1):893–909

    Article  Google Scholar 

  • Yasuda I (2004) North Pacific Intermediate Water: progress in SAGE (SubArctic Gyre Experiment) and related projects. J Oceanogr 60:385–395. https://doi.org/10.1023/B:JOCE.0000038344.25081.42

    Article  Google Scholar 

  • Yasuda I, Okuda K, Hirai M (1992) Evolution of a Kuroshio warm-core ring - variability of the hydrographic structure. Deep Sea Res 39:S131–S161

    Article  Google Scholar 

  • Yasuda I, Okuda K, Shimizu Y (1996) Distribution and modification of North Pacific Intermediate Water in the Kuroshio-Oyashio interfrontal zone. J Phys Oceanogr 26:448–465

    Article  Google Scholar 

  • Zhang Z, Zhang Y, Wang W, Huang RX (2013) Universal structure of mesoscale eddies in the ocean. Geophys Res Lett 40:3677–3681. https://doi.org/10.1002/grl.50736

    Article  Google Scholar 

  • Zhang Z, Wang W, Qiu B (2014) Oceanic mass transport by mesoscale eddies. Science 345:322–324. https://doi.org/10.1126/science.1252418

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the captain, crew and scientists participating in the KH-16-3 cruise of the R/V Hakuho-Maru of the Japan Agency for Marine-Earth Science and Technology for their successful surveys. We are grateful to two anonymous reviewers for their helpful comments. This study is supported by the Japan Society for Promotion of Science (KAKENHI, Grant-in-Aid for Scientific Research (B) no. 25287118 and Grant-in-Aid for Challenging Exploratory Research no. 26610148) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant-in-Aid for Scientific Research on Innovative Areas no. 22106007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Ito.

Appendix

Appendix

1.1 Calculation of horizontal shear

The x-axis and y-axis were defined as positive eastward and positive northward, respectively, and geostrophic velocities and x- and y-derivatives of π, U, and V were calculated. We defined the westernmost line (line 5) as i = 1 and the southernmost station in each line as j = 1. For a variable A, the x-derivative was calculated as:

$$\frac{{\partial A_{i, j} }}{\partial x} = \frac{{A_{i, j} - A_{i - 1, j - 1} }}{{x_{i, j} - x_{i - 1, j - 1} }}{\text{with}} i = 2, 5, j = 2, 16,$$
(6)

after raw data were horizontally smoothed using a three-point Hanning filter. As shown in Eq. 6, the x-derivatives were calculated in line 1, 2, 3, and 4. The difference was divided by their distance apart (~ 15 km). The y-derivative was calculated as:

$$\frac{{\partial A_{i, j} }}{\partial y} = \frac{{A_{i, j + 1} - A_{i, j - 1} }}{{y_{i, j + 1} - y_{i, j - 1} }}{\text{with}} i = 1, 5, j = 2, 15.$$
(7)

The difference was divided by their distance apart (~ 11 km).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ito, D., Suga, T., Kouketsu, S. et al. Spatiotemporal evolution of submesoscale filaments at the periphery of an anticyclonic mesoscale eddy north of the Kuroshio Extension. J Oceanogr 77, 763–780 (2021). https://doi.org/10.1007/s10872-021-00607-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-021-00607-4

Keywords

Navigation