Skip to main content
Log in

Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The fusion of the leaching and purification processes was realized by directly using microemulsion as the leaching agent. The bis-(2-ethyhexyl) phosphoric acid (DEHPA)/n-heptane/NaOH microemulsion system was established to directly leach vanadates from sodium-roasted vanadium slag. The effect of the leaching agent on the leaching efficiency was investigated, in addition to the molar ratio of H2O/NaDEHP (W), DEHPA concentration, solid/liquid ratio, stirring time, and leaching temperature. In optimal situations, the vanadium leaching efficiency reaches 79.57%. The X-ray diffraction characterization of the leaching residue and the Raman spectrum of the microemulsion before and after leaching demonstrate the successful entry of vanadates from the sodium-roasted vanadium slag into the microemulsion. The proposed method successfully realizes the leaching and purification of vanadates in one step, thereby greatly reducing production costs and environmental pollution. It also offers a new way to achieve the green recovery of valuable metals from solid resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.R. Moskalyk and A.M. Alfantazi, Processing of vanadium: a review, Min. Eng., 16(2003), No. 9, p. 793.

    Article  CAS  Google Scholar 

  2. D.X. Huang, Re-Vanadium and Steel-Making, The Metallurgy Industry Press, Beijing, 2000, p. 55.

    Google Scholar 

  3. X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 301.

    Article  CAS  Google Scholar 

  4. W.D. Tang, S.T. Yang, and X.X. Xue, Effect of Cr2O3 addition on oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets with simulated coke oven gas, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 963.

    Article  CAS  Google Scholar 

  5. Y.M. Zhang, L.N. Wang, D.S. Chen, W.J. Wang, Y.H. Liu, H.X. Zhao, and T. Qi, A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 131.

    Article  CAS  Google Scholar 

  6. Z. Wang, H.Y. Sun, and Q.S. Zhu, Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1120.

    Article  CAS  Google Scholar 

  7. X.S. Li, B. Xie, G.E. Wang, and X.J. Li, Oxidation process of low-grade vanadium slag in presence of Na2CO3, Trans. Nonferrous Met. Soc. China., 21(2011), No. 8, p. 1860.

    Article  CAS  Google Scholar 

  8. Z. Yang, H.Y. Li, X.C. Yin, Z.M. Yan, X.M. Yan, and B. Xie, Leaching kinetics of calcification roasted vanadium slag with high CaO content by sulfuric acid, Int. J. Miner. Process., 133(2014), p. 105.

    Article  CAS  Google Scholar 

  9. B. Liu, H. Du, S.N. Wang, Y. Zhang, S.L. Zheng, L.J. Li, and D.H. Chen, A novel method to extract vanadium and chromium from vanadium slag using molten NaOH-NaNO3 binary system, AlChE J., 59(2013), No. 2, p. 541.

    Article  CAS  Google Scholar 

  10. H.Y. Li, H.X. Fang, K. Wang, W. Zhou, Z. Yang, X.M. Yan, W.S. Ge, Q.W. Li, and B. Xie, Asynchronous extraction of vanadium and chromium from vanadium slag by stepwise sodium roasting-water leaching, Hydrometallurgy, 156(2015), p. 124.

    Article  CAS  Google Scholar 

  11. J. Wen, T. Jiang, Y.J. Liu, and X.X. Xue, Extraction behavior of vanadium and chromium by calcification roasting-acid leaching from high chromium vanadium slag: Optimization using response surface methodology, Miner. Process. Extr. Metall. Rev., 40(2019), No. 1, p. 56.

    Article  CAS  Google Scholar 

  12. H.B. Liu, H. Du, D.W. Wang, S.N. Wang, S.L. Zheng, and Y. Zhang, Kinetics analysis of decomposition of vanadium slag by KOH sub-molten salt method, Trans. Nonferrous Met. Soc. China, 23(2013), No. 5, p. 1489.

    Article  CAS  Google Scholar 

  13. Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1–2, p. 116.

    Article  CAS  Google Scholar 

  14. P.G. Ning, X. Lin, H.B. Cao, and Y. Zhang, Selective extraction and deep separation of V(V) and Cr(VI) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21, Sep. Purif. Technol., 137(2014), p. 109.

    Article  CAS  Google Scholar 

  15. H.Y. Li, C. Li, M. Zhang, K. Wang, and B. Xie, Removal of V(V) from aqueous Cr(VI)-bearing solution using anion exchange resin: Equilibrium and kinetics in batch studies, Hydrometallurgy, 165(2016), p. 381.

    Article  CAS  Google Scholar 

  16. Y. Guo, D.Q. Li, B. Xie, and H.Y. Li, Efficient extraction of V(V) in aqueous solution by microemulsion system, [in] The 148th TMS Annual Meeting & Exhibition, San Antonio, 2019, p. 31.

  17. K. Letts and R.A. Mackay, Reactions in microemulsions. I. metal ion incorporation by tetraphenylporphine, Inorg. Chem., 14(1975), No. 12, p. 2990.

    Article  CAS  Google Scholar 

  18. M.J. Schwuger, K. Stickdornt, and R. Schomaecker, Microemulsions in technical processes, Chem. Rev., 95(1995), No. 4, p. 849.

    Article  CAS  Google Scholar 

  19. Y. Guo, H.Y. Li, X. Zhang, J. Huang, J.K. Feng, J. Diao and, B. Xie, Steering polyoxometalate transformation from octahedral to tetrahedral coordination by counter-cations, Dalton Trans., 49(2020), No. 3, p. 583.

    Article  CAS  Google Scholar 

  20. J. Wang, Preparation And Application of Microemulsion, China Textile & Apparel Press, Beijing, 2011, p. 48.

    Google Scholar 

  21. L.M. Prince, Formulation, Microemulsions Theory and Practice, Academic Press, Pittsburgh, 1977, p. 33.

    Google Scholar 

  22. A.Z. Ma, X.J. Cui, G.F. Zeng, X. Cui, L. Tian, H. Xu, and L.M. Li, Infrared and raman spectra of rare earth complexes with bis-(2-ethylhexyl)-phosphoric acid, Chin. J. Spec. Lab., 23(2006), No. 5, p. 893.

    CAS  Google Scholar 

  23. F.R. Dorinci, W.G. Fortley, and F.F. Bentley, Characteristic Raman Frequency of Organic Compounds, Chinese Chemical Society, Beijing, 1980, p. 15.

    Google Scholar 

  24. F.D. Hardcastle and I.E. Wachs, Determination of vanadium-oxygen bond distances and bond orders by Raman spectro-scopy, J. Phys. Chem., 95(1991), No. 13, p. 5031.

    Article  CAS  Google Scholar 

  25. R.L. Frost and S.J. Palmer, Raman spectroscopic study of pascoite Ca3V10O(28)·17H2O, Spectrochim. Acta, Part A, 78(2011), No. 1, p. 248.

    Article  Google Scholar 

  26. Z.G. Deng, C. Wei, G. Fang, M.T. Li, C.X. Li, and X.B. Li, Extracting vanadium from stone-coal by oxygen pressure acid leaching and solvent extraction, Trans. Nonferrous Met. Soc. China., 20(2009), Suppl. 1, p. 118.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51474041 and 51674051), Chongqing Science and Technology Bureau (No. cstc2019jcyjjqX0006), and Chongqing Talents Plan for Young Talents (No. CQYC201905050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-yi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Li, Hy., Yuan, Yh. et al. Microemulsion leaching of vanadium from sodium-roasted vanadium slag by fusion of leaching and extraction processes. Int J Miner Metall Mater 28, 974–980 (2021). https://doi.org/10.1007/s12613-020-2105-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2105-1

Keywords

Navigation