Skip to main content
Log in

Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

As ore grades constantly decline, more copper tailings, which still contain a considerable amount of unrecovered copper, are expected to be produced as a byproduct of froth flotation. This research reveals the occurrence mechanism of copper minerals in typical copper sulfide tailings using quantitative mineral liberation analysis (MLA) integrated with scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS). A comprehensive mineralogical characterization was carried out, and the results showed that almost all copper minerals were highly disseminated within coarse gangue particles, except for 9.2wt% chalcopyrite that occurred in the 160–180 µm size fraction. The predominant copper-bearing mineral was chalcopyrite, which was closely intergrown with orthoclase and muscovite rather than quartz. The flotation tailings sample still contained 3.28wt% liberated chalcopyrite and 3.13wt% liberated bornite because of their extremely fine granularity. The SEM-EDS analysis further demonstrated that copper minerals mainly occurred as fine dispersed and fully enclosed structures in gangue minerals. The information obtained from this research could offer useful references for recovering residual copper from flotation tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport, Extractive Metallurgy of Copper, Elsevier, Amsterdam, 2011.

    Google Scholar 

  2. K.J. Nyembwe, E. Fosso-Kankeu, F. Waanders, and K.D. Nyembwe, Structural, compositional and mineralogical characterization of carbonatitic copper sulfide: Run of mine, concentrate and tailings, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 143.

    Article  CAS  Google Scholar 

  3. Y. Li, N. Kawashima, J. Li, A.P. Chandra, and A.R. Gerson, A review of the structure. and fundamental mechanisms and kinetics of the leaching of chalcopyrite, Adv. Colloid Interface Sci., 197–198(2013), p. 1.

    Google Scholar 

  4. D. Mesa and P.R. Brito-Parada, Scale-up in froth flotation: A state-of-the-art review, Sep. Purif. Technol., 210(2019), p. 950.

    Article  CAS  Google Scholar 

  5. B. Feng, C.H. Zhong, L.Z. Zhang, Y.T. Guo, T. Wang, and Z.Q. Huang, Effect of surface oxidation on the depression of sphalerite by locust bean gum, Miner. Eng., 146(2020), art. No. 106142.

  6. M.M. Antonijević, M.D. Dimitrijević, Z.O. Stevanović, S.M. Serbula, and G.D. Bogdanovic, Investigation of the possibility of copper recovery from the flotation tailings by acid leaching, J. Hazard. Mater., 158(2008), No. 1, p. 23.

    Article  CAS  Google Scholar 

  7. B.S. Han, B. Altansukh, K. Haga, Z. Stevanović, R. Jonović, L. Avramović, D. Urosević, Y. Takasaki, N. Masuda, D. Ishiyama, and A. Shibayama, Development of copper recovery process from flotation tailings by a combined method of high-pressure leaching-solvent extraction, J. Hazard. Mater., 352(2018), p. 192.

    Article  CAS  Google Scholar 

  8. J. Alcalde, U. Kelm, and D. Vergara, Historical assessment of metal recovery potential from old mine tailings: A study case for porphyry copper tailings, Chile, Miner. Eng., 127(2018), p. 334.

    Article  CAS  Google Scholar 

  9. Z.G. Yin, W. Sun, Y.H. Hu, C.H. Zhang, Q.J. Guan, and K.P. Wu, Evaluation of the possibility of copper recovery from tailings by flotation through bench-scale, commissioning, and industrial tests, J. Cleaner Prod., 171(2018), p. 1039.

    Article  CAS  Google Scholar 

  10. J. Pazhoohan, H. Beiki, and M. Esfandyari, Experimental investigation and adaptive neural fuzzy inference system prediction of copper recovery from flotation tailings by acid leaching in a batch agitated tank, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 538.

    Article  CAS  Google Scholar 

  11. S.H. Yin, L.M. Wang, A.X. Wu, E. Kabwe, X. Chen, and R.F. Yan, Copper recycle from sulfide tailings using combined leaching of ammonia solution and alkaline bacteria, J. Cleaner Prod., 189(2018), p. 746.

    Article  CAS  Google Scholar 

  12. K. Nakajima, I. Daigo, K. Nansai, K. Matsubae, W. Takayanagi, M. Tomita, and Y. Matsuno, Global distribution of material consumption: Nickel, copper, and iron, Resour. Conserv. Recycl., 133(2018), p. 369.

    Article  Google Scholar 

  13. H.K. Hansen, J.B. Yianatos, L.M. Ottosen, Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size, Chemosphere, 60(2005), No. 10, p. 1497.

    Article  CAS  Google Scholar 

  14. S. Jannesar Malakooti, S.Z. Shafaei Tonkaboni, M. Noaparast, F. Doulati Ardejani, and R. Naseh, Characterisation of the Sarcheshmeh copper mine tailings, Kerman province, southeast of Iran, Environ. Earth Sci., 71(2014), No. 5, p. 2267.

    Article  CAS  Google Scholar 

  15. M. Asghari, F. Nakhaei, and O. VandGhorbany, Copper recovery improvement in an industrial flotation circuit: A case study of Sarcheshmeh copper mine, Energy Sources Part A, 41(2019), No. 6, p. 761.

    Article  CAS  Google Scholar 

  16. I. Mackay, E. Mendez, I. Molina, A.R. Videla, J.J. Cilliers, and P.R. Brito-Parada, Dynamic froth stability of copper flotation tailings, Miner. Eng., 124(2018), p. 103.

    Article  CAS  Google Scholar 

  17. R.F. Zhu, G.H. Gu, Z.X. Chen, Y.H. Wang, and S.Y. Song, A new collector for effectively increasing recovery in copper oxide ore-staged flotation, Minerals, 9(2019), No. 10, p. 595.

    Article  CAS  Google Scholar 

  18. B. Feng, W.P. Zhang, Y.T. Guo, J.X. Peng, X.H. Ning, and H.H. Wang, Synergistic effect of acidified water glass and locust bean gum in the flotation of a refractory copper sulfide ore, J. Cleaner Prod., 202(2018), p. 1077.

    Article  CAS  Google Scholar 

  19. S. Northey, S. Mohr, G.M. Mudd, Z. Weng, and D. Giurco, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl., 83(2014), p. 190.

    Article  Google Scholar 

  20. B. Golding and S.D. Golding, Metals, Energy and Sustainability, Springer, Cham, 2017, p. 21.

    Book  Google Scholar 

  21. R.B. Gordon, Production residues in copper technological cycles, Resour. Conserv. Recycl., 36(2002), No. 2, p. 87.

    Article  Google Scholar 

  22. C.C. Lü, Y.L. Wang, P. Qian, Y. Liu, G.Y. Fu, J. Ding, S.F. Ye, and Y.F. Chen, Separation of chalcopyrite and pyrite from a copper tailing by ammonium humate, Chin. J. Chem. Eng., 26(2018), No. 9, p. 1814.

    Article  CAS  Google Scholar 

  23. A.C. Brown, World-class sediment-hosted stratiform copper deposits: Characteristics, genetic concepts and metallotects, Aust. J. Earth Sci., 44(1997), No. 3, p. 317.

    Article  CAS  Google Scholar 

  24. R.R. McGowan, S. Roberts, and A.J. Boyce, Origin of the Nchanga copper—Cobalt deposits of the Zambian Copperbelt, Miner. Deposita, 40(2006), No. 6, p. 617.

    Article  CAS  Google Scholar 

  25. J.L.H. Cailteux, A.B. Kampunzu, C. Lerouge, A.K. Kaputo, and J.P. Milesi, Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt, J. Afr. Earth Sci., 42(2005), No. 1–5, p. 134.

    Article  CAS  Google Scholar 

  26. J.K. Wen, B.W. Chen, H. Shang, and G.C. Zhang, Research progress in biohydrometallurgy of rare metals and heavy non-ferrous metals with an emphasis on China, Rare Met., 35(2016), No. 6, p. 433.

    Article  CAS  Google Scholar 

  27. X.D. Hao, X.D. Liu, Q. Yang, H.W. Liu, H.Q. Yin, G.Z. Qiu, and Y.L. Liang, Comparative study on bioleaching of two different types of low-grade copper tailings by mixed moderate thermophiles, Trans. Nonferrous Met. Soc. China, 28(2018), No. 9, p. 1847.

    Article  CAS  Google Scholar 

  28. J.B. Chen, R.J. Li, and L.H. Yu, The way of the survey and assessment of copper tailings resources and their application, J. Nat. Resour., 27(2012), No. 8, p. 1373.

    Google Scholar 

  29. L. Pérez-Barnuevo, E. Pirard, and R. Castroviejo, Automated characterisation of intergrowth textures in mineral particles. A case study, Miner. Eng., 52(2013), p. 136.

    Article  CAS  Google Scholar 

  30. Y. Gu, R.P. Schouwstra, and C. Rule, The value of automated mineralogy, Miner. Eng., 58(2014), p. 100.

    Article  CAS  Google Scholar 

  31. R. Sousa, B. Simons, K. Bru, A.B. de Sousa, G. Rollinson, J. Andersen, M. Martin, and M.M. Leite, Use of mineral liberation quantitative data to assess separation efficiency in mineral processing—Some case studies, Miner. Eng., 127(2018), p. 134.

    Article  CAS  Google Scholar 

  32. P.Y. Zhang, L.M. Ou, L.M. Zeng, W.G. Zhou, and H.T. Fu, MLA-based sphalerite flotation optimization: Two-stage roughing, Powder Technol., 343(2019), p. 586.

    Article  CAS  Google Scholar 

  33. L. Liu, Q. Tan, L. Liu, and J.C. Cao, Comparison of different comminution flowsheets in terms of minerals liberation and separation properties, Miner. Eng., 125(2018), p. 26.

    Article  CAS  Google Scholar 

  34. T. Leißner, K. Bachmann, J. Gutzmer, and U.A. Peuker, MLA-based partition curves for magnetic separation, Miner. Eng., 94(2016), p. 94.

    Article  CAS  Google Scholar 

  35. Z. Li, Y.H. Fu, C. Yang, W. Yu, L.J. Liu, J.Z. Qu, and W. Zhao, Mineral liberation analysis on coal components separated using typical comminution methods, Miner. Eng., 126(2018), p. 74.

    Article  CAS  Google Scholar 

  36. D.H. Hoang, A. Hassanzadeh, U.A. Peuker, and M. Rudolph, Impact of flotation hydrodynamics on the optimization of finegrained carbonaceous sedimentary apatite ore beneficiation, Powder Technol., 345(2019), p. 223.

    Article  CAS  Google Scholar 

  37. C.L. Xu, C.B. Zhong, R.L. Lyu, Y.Y. Ruan, Z.Y. Zhang, and R.A. Chi, Process mineralogy of Weishan rare earth ore by MLA, J. Rare Earths, 37(2019), No. 3, p. 334.

    Article  CAS  Google Scholar 

  38. B. Babel, M. Penz, E. Schach, S. Boehme, and M. Rudolph, Re-processing of a southern Chilean Zn tailing by flotation—A case study, Minerals, 8(2018), No. 7, p. 295.

    Article  CAS  Google Scholar 

  39. K. Berkh, D. Rammlmair, M. Drobe, and J. Meima, Case study: Geochemistry and mineralogy of copper mine tailings in Northern Central-Chile, [in] 14th International Congress for Applied Mineralogy, Belgorod, 2019, p. 37.

  40. B. Forsyth, M. Edraki, and T. Baumgartl, The evolution of tailings seepage chemistry at one of Australia’s largest and longest operating mines, [in] 10th International Conference on AcidRock Drainage and Annual IMWA Conference, Santiago, 2015, p. 1.

  41. L. Wang and M.Y. Wang, Research on copper dissemination state from old tailings in a copper mine, Nonferrous Met. (Miner. Process. Sect.), 2012, No. 6, p. 1.

    Google Scholar 

  42. D. Naumov, L. Stamenov, S. Gaydardzhiev, and H. Bouzahzah, Coupling mineralogy with physicochemical parameters in view copper flotation efficiency improvement, Physicochem. Probl. Miner. Process., 55(2019), No. 3, p. 701.

    CAS  Google Scholar 

  43. M. Lu, D.H. Xie, W.H. Gui, L.H. Wu, C.Y. Chen, and C.H. Yang, A cascaded recognition method for copper rougher flotation working conditions, Chem. Eng. Sci., 175(2018), p. 220.

    Article  CAS  Google Scholar 

  44. F. Kukurugya, A. Rahfeld, R. Möckel, P. Nielsen, L. Horckmans, J. Spooren, and K. Broos, Recovery of iron and lead from a secondary lead smelter matte by magnetic separation, Miner. Eng., 122(2018), p. 17.

    Article  CAS  Google Scholar 

  45. D. Sandmann and J. Gutzmer, Use of mineral liberation analysis (MLA) in the characterization of lithium-bearing micas, J. Miner. Mater. Charact. Eng., 1(2013), No. 6, p. 285.

    Google Scholar 

  46. B. Schulz, G. Merker, and J. Gutzmer, Automated SEM mineral liberation analysis (MLA) with generically labelled EDX spectra in the mineral processing of rare earth element ores, Minerals, 9(2019), No. 9, p. 527.

    Article  CAS  Google Scholar 

  47. A. Bakalarz, M. Duchnowska, and A. Luszczkiewicz, Influence of liberation of sulphide minerals on flotation of sedimentary copper ore, [in] E3S Web of Conferences, Paris, 2017, art. No. 01025.

  48. O. Sracek, M. Mihaljevič, B. Kříbek, V. Majer, and F. Veselovský, Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia, J. Afr. Earth Sci., 57(2010), No. 1–2, p. 14.

    Article  CAS  Google Scholar 

  49. T.T. Jacobs, Process Mineralogical Characterisation of the Kansanshi Copper Ore, NW Zambia [Dissertation], University of Cape Town, Cape Town, 2016.

  50. P. Vallejos, J. Yianatos, L. Vinnett, and L. Bergh, Characterization of the industrial flotation process based on size-liberation relationships, Miner. Eng., 121(2018), p. 189.

    Article  CAS  Google Scholar 

  51. A. Norori-McCormac, P.R. Brito-Parada, K. Hadler, K. Cole, and J.J. Cilliers, The effect of particle size distribution on froth stability in flotation, Sep. Purif. Technol., 184(2017), p. 240.

    Article  CAS  Google Scholar 

  52. A.M. Gaudin, R. Schuhmann Jr., and A.W. Schlechten, Flotation kinetics. II. The effect of size on the behavior of galena particles, J. Phys. Chem., 46(1942), No. 8, p. 902.

    Article  CAS  Google Scholar 

  53. A. Bahrami, M. Mirmohammadi, Y. Ghorbani, F. Kazemi, M. Abdollahi, and A. Danesh, Process mineralogy as a key factor affecting the flotation kinetics of copper sulfide minerals, Int. J. Miner. Metall. Mater., 26(2019), No. 4, p. 430.

    Article  CAS  Google Scholar 

  54. D. Kossoff, W.E. Dubbin, M. Alfredsson, S.J. Edwards, M.G. Macklin, and K.A. Hudson-Edwards, Mine tailings dams: Characteristics, failure, environmental impacts, and remediation, Appl. Geochem., 51(2014), p. 229.

    Article  CAS  Google Scholar 

  55. S. Hashmi, B. Ward, A. Plouffe, T. Ferbey, and M. Leybourne, Geochemical and mineralogical dispersal in till from the Mount Polley Cu-Au porphyry deposit, central British Columbia, Canada, Geol. Surv. Can., (2014), art. No. 7589.

  56. C. Kennedy, S.J. Day, and C.D. Anglin, Geochemistry of tailings from the Mount Polley Mine, British Columbia, [in] Proceedings Tailings and Mine Waste 2016, Keystone, 2016, p. 857.

  57. A.F. Cropp, W.R. Goodall, and D.J. Bradshaw, The influence of textural variation and gangue mineralogy on recovery of copper by flotation from porphyry ore—A review, [in] The Second AusIMM International Geometallurgy Conference, Brisbane, 2013, p. 279.

  58. C.B. Zhong, C.L. Xu, R.L. Lyu, Z.Y. Zhang, X.Y. Wu, and R.A. Chi, Enhancing mineral liberation of a Canadian rare earth ore with microwave pretreatment, J. Rare Earths, 36(2018), No. 2, p. 215.

    Article  CAS  Google Scholar 

  59. M. Camalan, M. Çavur, and Ç. Hosten, Assessment of chromite liberation spectrum on microscopic images by means of a supervised image classification, Powder Technol., 322(2017), p. 214.

    Article  CAS  Google Scholar 

  60. M.J. Mankosa, J.N. Kohmuench, L. Christodoulou, and G.H. Luttrell, Recovery of values from a porphory copper tailings stream, [in] The XXVIII International Mineral Processing Congress, Quebec, 2016, p. 11.

  61. S. Agheli, A. Hassanzadeh, B.V. Hassas, and M. Hasanzadeh, Effect of pyrite content of feed and configuration of locked particles on rougher flotation of copper in low and high pyritic ore types, Int. J. Min. Sci. Technol., 28(2018), No. 2, p. 167.

    Article  CAS  Google Scholar 

  62. S.M. Bulatovic, D.M. Wyslouzil, and C. Kant, Operating practices in the beneficiation of major porphyry copper/molybdenum plants from Chile: Innovated technology and opportunities, a review, Miner. Eng., 11(1998), No. 4, p. 313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by a grant from Non-ferrous Corporation Africa Mining Public Limited Company and National Natural Science Foundation of China (No. 51804020). We gratefully acknowledge NFC Africa Mining Plc. for sample collection and delivery. We also would like to acknowledge Institute of Process Engineering, Chinese Academy of Sciences for the MLA measurement.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jue Kou or Chun-bao Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xl., Kou, J., Sun, Cb. et al. Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings. Int J Miner Metall Mater 28, 944–955 (2021). https://doi.org/10.1007/s12613-020-2093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2093-1

Keywords

Navigation