Skip to main content
Log in

Powder metallurgy of high-entropy alloys and related composites: A short review

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

High-entropy alloys (HEAs) have attracted increasing attention because of their unique properties, including high strength, hardness, chemical stability, and good wear resistance. Powder metallurgy is one of the most important methods used to fabricate HEA materials. This paper introduces the methods used to synthesize HEA powders and consolidate HEA bulk. The phase transformation, microstructural evolution, and mechanical properties of HEAs obtained by powder metallurgy are summarized. We also address HEA-related materials such as ceramic-HEA cermets and HEA-based composites fabricated by powder metallurgy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yeh, Recent progress in high-entropy alloys, Eur. J. Control, 31(2006), No. 6, p. 633.

    CAS  Google Scholar 

  2. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299.

    Article  CAS  Google Scholar 

  3. F. Otto, Y. Yang, H. Bei, and E.P. George, Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys, Acta Mater., 61(2013), No. 7, p. 2628.

    Article  CAS  Google Scholar 

  4. A.J. Zaddach, R.O. Scattergood, and C.C. Koch, Tensile properties of low-stacking fault energy high-entropy alloys, Mater. Sci. Eng. A, 636(2015), p. 373.

    Article  CAS  Google Scholar 

  5. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys, Acta Mater., 60(2012), No. 16, p. 5723.

    Article  CAS  Google Scholar 

  6. K.M. Youssef, A.J. Zaddach, C.N. Niu, D.L. Irving, and C.C. Koch, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett., 3(2015), No. 2, p. 95.

    Article  CAS  Google Scholar 

  7. C.Z. Yao, P. Zhang, M. Liu, G.R. Li, J.Q. Ye, P. Liu, and Y.X. Tong, Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy, Electrochim. Acta, 53(2008), No. 28, p. 8359.

    Article  CAS  Google Scholar 

  8. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1.

    Article  CAS  Google Scholar 

  9. F. Granberg, K. Nordlund, M.W. Ullah, K. Jin, C. Lu, H. Bei, L.M. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang, Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys, Phys. Rev. Lett., 116(2016), No. 13, art. No. 135504.

  10. J.P. Liu, X.X. Guo, Q.Y. Lin, Z.B. He, X.H. An, L.F. Li, P.K. Liaw, X.Z. Liao, L.P. Yu, J.P. Lin, L. Xie, J.L. Ren, and Y. Zhang, Excellent ductility and serration feature of metastable CoCrFeNi high-entropy alloy at extremely low temperatures, Sci. China Mater., 62(2019), No. 6, p. 853.

    Article  CAS  Google Scholar 

  11. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys, Mater. Sci. Eng. A, 508(2009), No. 1–2, p. 214.

    Article  CAS  Google Scholar 

  12. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Annealing on the structure and properties evolution of the CoCrFeNiCuAl high-entropy alloy, J. Alloys Compd., 502(2010), No. 2, p. 295.

    Article  CAS  Google Scholar 

  13. K.B. Zhang and Z.Y. Fu, Effects of annealing treatment on phase composition and microstructure of CoCrFeNiTiAlx high-entropy alloys, Intermetallics, 22(2012), p. 24.

    Article  CAS  Google Scholar 

  14. K.B. Zhang and Z.Y. Fu, Effects of annealing treatment on properties of CoCrFeNiTiAlx multi-component alloys, Intermetallics, 28(2012), p. 34.

    Article  CAS  Google Scholar 

  15. M.C. Gao, J.W. Yeh, P.K. Liaw, and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer, Cham, 2016.

    Book  Google Scholar 

  16. R.M. German, Powder Metallurgy Science, 2nd ed., Metal Powder Industries Federation, New Jersey, Princeton, 1994.

    Google Scholar 

  17. H.H. Hausner, Modern Developments in Powder Metallurgy, Springer, Boston, 1966.

    Book  Google Scholar 

  18. P.Y. Ma, S.C. Zhang, M.T. Zhang, J.F. Gu, L. Zhang, Y.C. Sun, W. Ji, and Z.Y. Fu, Hydroxylated high-entropy alloy as highly efficient catalyst for electrochemical oxygen evolution reaction, Sci. China Mater., 63(2020), No. 12, p. 2613.

    Article  Google Scholar 

  19. P.Y. Ma, M.M. Zhao, L. Zhang, H. Wang, J.F. Gu, Y.C. Sun, W. Ji, and Z.Y. Fu, Self-supported high-entropy alloy electrocatalyst for highly efficient H2 evolution in acid condition, J. Materiomics, 6(2020), No. 4, p. 736.

    Article  Google Scholar 

  20. M. Vaidya, G.M. Muralikrishna, and B.S. Murty, High-entropy alloys by mechanical alloying: A review, J. Mater. Res., 34(2019), No. 5, p. 664.

    Article  CAS  Google Scholar 

  21. P.A. Kumar and C.S. Perugu, Synthesis of FeCrVNbMn high entropy alloy by mechanical alloying and study of their microstructure and mechanical properties, [in] The Minerals, Metals & Materials Society, ed., TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings, Phoenix, Arizona, 2018, p. 669.

  22. C. Suryanarayana and F.H. Froes, Nanocrystalline titanium-magnesium alloys through mechanical alloying, J. Mater. Res., 5(1990), No. 9, p. 1880.

    Article  CAS  Google Scholar 

  23. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying, J. Alloys Compd., 460(2008), No. 1–2, p. 253.

    Article  CAS  Google Scholar 

  24. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying, Mater. Sci. Eng. A, 527(2010), No. 4–5, p. 1027.

    Article  CAS  Google Scholar 

  25. Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J.W. Yeh, T.S. Chin, and S.K. Chen, Alloying behavior of binary to octonary alloys based on Cu-Ni-Al-Co-Cr-Fe-Ti-Mo during mechanical alloying, J. Alloys Compd., 477(2009), No. 1–2, p. 696.

    Article  CAS  Google Scholar 

  26. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying, J. Alloys Compd., 485(2009), No. 1–2, p. L31.

    Article  CAS  Google Scholar 

  27. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying, J. Alloys Compd., 495(2010), No. 1, p. 33.

    Article  CAS  Google Scholar 

  28. W. Ji, Z.Y. Fu, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, and F. Zhang, Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy, J. Alloys Compd., 589(2014), p. 61.

    Article  CAS  Google Scholar 

  29. W. Ji, W.M. Wang, H. Wang, J.Y. Zhang, Y.C. Wang, F. Zhang, and Z.Y. Fu, Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering, Intermetallics, 56(2015), p. 24.

    Article  CAS  Google Scholar 

  30. C. Wang, W. Ji, and Z.Y. Fu, Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy, Adv. Powder Technol., 25(2014), No. 4, p. 1334.

    Article  CAS  Google Scholar 

  31. Y.C. Sun, B.R. Ke, Y.L. Li, K. Yang, M.Q. Yang, W. Ji, and Z.Y. Fu, Phases, microstructures and mechanical properties of CoCrNiCuZn high-entropy alloy prepared by mechanical alloying and spark plasma sintering, Entropy, 21(2019), No. 2, art. No. 122.

  32. B. Niu, W. Ji, N. Li, F. Zhang, and Y. Wu, Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying, Mater. Sci. Technol., 32(2016), No. 1, p. 94.

    Article  CAS  Google Scholar 

  33. S. Das and P.S. Robi, Mechanical alloying of W-Mo-V-Cr-Ta high entropy alloys, IOP Conf. Ser.: Mater. Sci. Eng., 346(2018), art. No. 012047.

  34. J.Y. Pan, T. Dai, T. Lu, X.Y. Ni, J.W. Dai, and M. Li, Microstructure and mechanical properties of Nb25Mo25Ta25W25 and Ti8Nb23Mo23Ta23W23 high entropy alloys prepared by mechanical alloying and spark plasma sintering, Mater. Sci. Eng. A, 738(2018), p. 362.

    Article  CAS  Google Scholar 

  35. J.H. Yan, M.J. Li, K.L. Li, J.W. Qiu, and Y.J. Guo, Effects of Cr content on microstructure and mechanical properties of WMoNbTiCr high-entropy alloys, J. Mater. Eng. Perform., 29(2020), No. 4, p. 2125.

    Article  CAS  Google Scholar 

  36. P.P. Ding, A.Q. Mao, X. Zhang, X. Jin, B. Wang, M. Liu, and X.L. Gu, Preparation, characterization and properties of multicomponent AlCoCrFeNi2.1 powder by gas atomization method, J. Alloys Compd., 721(2017), p. 609.

    Article  CAS  Google Scholar 

  37. C.C. Yang, J.L.H. Chau, C.J. Weng, C.S. Chen, and Y.H. Chou, Preparation of high-entropy AlCoCrCuFeNiSi alloy powders by gas atomization process, Mater. Chem. Phys., 202(2017), p. 151.

    Article  CAS  Google Scholar 

  38. Y.G. Yao, Z.N. Huang, P.F. Xie, S.D. Lacey, R.J. Jacob, H. Xie, F.J. Chen, A.M. Nie, T.C. Pu, M. Rehwoldt, D.W. Yu, M.R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, and L.B. Hu, Carbothermal shock synthesis of high-entropy-alloy nanoparticles, Science, 359(2018), No. 6383, p. 1489.

    Article  CAS  Google Scholar 

  39. B. Niu, F. Zhang, H. Ping, N. Li, J.Y. Zhou, L.W. Lei, J.J. Xie, J.Y. Zhang, W.M. Wang, and Z.Y. Fu, Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys, Sci. Rep., 7(2017), No. 1, art. No. 3421.

  40. A.J. Zhang, J.S. Han, J.H. Meng, B. Su, and P.D. Li, Rapid preparation of AlCoCrFeNi high entropy alloy by spark plasma sintering from elemental powder mixture, Mater. Lett., 181(2016), p. 82.

    Article  CAS  Google Scholar 

  41. W.P. Chen, Z.Q. Fu, S.C. Fang, H.Q. Xiao, and D.Z. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy, Mater. Design, 51(2013), p. 854.

    Article  CAS  Google Scholar 

  42. S.C. Fang, W.P. Chen, and Z.Q. Fu, Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering, Mater. Des., 54(2014), p. 973.

    Article  CAS  Google Scholar 

  43. L.H. Liu, C. Yang, Y.G. Yao, F. Wang, W.W. Zhang, Y. Long, and Y.Y. Li, Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process, Intermetallics, 66(2015), p. 1.

    Article  CAS  Google Scholar 

  44. C. Yang, M.D. Zhu, X. Luo, L.H. Liu, W.W. Zhang, Y. Long, Z.Y. Xiao, Z.Q. Fu, L.C. Zhang, and E.J. Lavernia, Influence of powder properties on densification mechanism during spark plasma sintering, Scripta Mater., 139(2017), p. 96.

    Article  CAS  Google Scholar 

  45. X.X. Li, C. Yang, T. Chen, Z.Q. Fu, Y.Y. Li, O.M. Ivasishin, and E.J. Lavernia, Determination of atomic diffusion coefficient via isochronal spark plasma sintering, Scripta Mater., 151(2018), p. 47.

    Article  CAS  Google Scholar 

  46. J. Xu, S.R. Wang, C.Y. Shang, S.F Huang, and Y. Wang, Microstructure and properties of CoCrFeNi(WC) high-entropy alloy coatings prepared using mechanical alloying and hot pressing sintering, Coatings, 9(2019), No. 1, art. No. 16.

  47. H. Cheng, Y.C. Xie, Q.H. Tang, C. Rao, and P.Q. Dai, Microstructure and mechanical properties of FeCoCrNiMn high-entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Trans. Nonferrous Met. Soc. China, 28(2018), No. 7, p. 1360.

    Article  CAS  Google Scholar 

  48. W.J. Ge, B. Wu, S.R. Wang, S. Xu, C.Y. Shang, Z.T. Zhang, and Y. Wang, Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering, Adv. Powder Technol., 28(2017), No. 10, p. 2556.

    Article  CAS  Google Scholar 

  49. Y.C. Xie, H. Cheng, Q.H. Tang, W. Chen, W.K. Chen, and P.Q. Dai, Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering, Intermetallics, 93(2018), p. 228.

    Article  CAS  Google Scholar 

  50. H. Jiang, H.Z. Zhang, T.D. Huang, Y.P. Lu, T.M. Wang, and T.J. Li, Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys, Mater. Des., 109(2016), p. 539.

    Article  CAS  Google Scholar 

  51. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Mater., 116(2016), p. 332.

    Article  CAS  Google Scholar 

  52. L. Jiang, Z.Q. Cao, J.C. Jie, J.J. Zhang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Mo and Ni elements on microstructure evolution and mechanical properties of the CoFeNixVMoy high entropy alloys, J. Alloys Compd., 649(2015), p. 585.

    Article  CAS  Google Scholar 

  53. Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui, Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys, Mater. Des., 83(2015), p. 651.

    Article  CAS  Google Scholar 

  54. Y.P. Wang, D.Y. Li, L. Parent, and H. Tian, Improving the wear resistance of white cast iron using a new concept-high-entropy microstructure, Wear, 271(2011), No. 9–10, p. 1623.

    Article  CAS  Google Scholar 

  55. A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis, Microstructure and wear behavior of a refractory high entropy alloy, Int. J. Refract. Met. Hard Mater., 57(2016), p. 50.

    Article  CAS  Google Scholar 

  56. C.Y. Shang, E. Axinte, J. Sun, X.T. Li, P. Li, J.W. Du, P.C. Qiao, and Y. Wang, CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering, Mater. Des., 117(2017), p. 193.

    Article  CAS  Google Scholar 

  57. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties, Appl. Phys. Lett., 90(2007), No. 18, art. No. 181904.

  58. S. Praveen, B.S. Murty, and R.S. Kottada, Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys, Mater. Sci. Eng. A, 534(2012), p. 83.

    Article  CAS  Google Scholar 

  59. Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, and D.Z. Zhu, Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering, J. Alloys Compd., 553(2013), p. 316.

    Article  CAS  Google Scholar 

  60. Z.Q. Fu, W.P. Chen, Z. Chen, H.M. Wen, and E.J. Lavernia, Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy, Mater. Sci. Eng. A, 619(2014), p. 137.

    Article  CAS  Google Scholar 

  61. P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, and M. Garuti, Microwave processing of high entropy alloys: A powder metallurgy approach, Chem. Eng. Process.: Process Intensif., 122(2017), p. 397.

    Article  CAS  Google Scholar 

  62. R. Rosa, P. Veronesi, and C. Leonelli, A review on combustion synthesis intensification by means of microwave energy, Chem. Eng. Process.: Process Intensif., 71(2013), p. 2.

    Article  CAS  Google Scholar 

  63. P. Veronesi, C. Leonelli, G. Poli, and A. Casagrande, Enhanced reactive NiAl coatings by microwave-assisted SHS, Compel, 27(2008), No. 2, p. 491.

    Article  Google Scholar 

  64. P. Veronesi, R. Rosa, E. Colombini, C. Leonelli, G. Poli, and A. Casagrande, Microwave assisted combustion synthesis of nonequilibrium intermetallic compounds, J. Microwave Power Electromagn. Energy, 44(2010), No. 1, p. 45.

    Article  Google Scholar 

  65. T. Wang, J. Kong, and B.X. Chao, Microstructure and mechanical properties of FeCoNiCuAl high-entropy alloy prepared by microwave-assisted combustion synthesis, Powder Metall. Technol., 29(2011), No. 6, p. 435.

    Google Scholar 

  66. P. Veronesi, E. Colombini, R. Rosa, C. Leonelli, and F. Rosi, Microwave assisted synthesis of Si-modified Mn25Fex Ni25Cu(50−x) high entropy alloys, Mater. Lett., 162(2016), p. 277.

    Article  CAS  Google Scholar 

  67. P. Veronesi, R. Rosa, E. Colombini, and C. Leonelli, Microwave-assisted preparation of high entropy alloys, Technologies, 3(2015), No. 4, p. 182.

    Article  Google Scholar 

  68. C.L. Tracy, S. Park, D.R. Rittman, S.J. Zinkle, H.B. Bei, M. Lang, R.C. Ewing, and W.L. Mao, High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi, Nat. Commun., 8(2017), art. No. 15634.

  69. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, Praveen S, R.S. Kottada, and B.S. Murty, Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi, Metall. Mater. Trans. A, 46(2015), No. 2, p. 791.

    Article  CAS  Google Scholar 

  70. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu, Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating, J. Mater. Eng. Perform., 25(2016), No. 12, p. 5513.

    Article  CAS  Google Scholar 

  71. L.H. Tian, M. Fu, and W. Xiong, Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance, Materials, 11(2018), No. 2, p. 320.

    Article  CAS  Google Scholar 

  72. W. Ji, J.Y. Zhang, W.M. Wang, H. Wang, F. Zhang, Y.C. Wang, and Z.Y. Fu, Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid, J. Eur. Ceram. Soc., 35(2015), No. 3, p. 879.

    Article  CAS  Google Scholar 

  73. G.B. Raju, A. Mukhopadhyay, K. Biswas, and B. Basu, Densification and high-temperature mechanical properties of hot pressed TiB2-(0-10 wt.%) MoSi2 composites, Scripta Mater., 61(2009), No. 7, p. 674.

    Article  CAS  Google Scholar 

  74. W.M. Wang, Z.Y. Fu, H. Wang, and R.Z. Yuan, Influence of hot pressing sintering temperature and time on microstructure and mechanical properties of TiB2 ceramics, J. Eur. Ceram. Soc., 22(2002), No. 7, p. 1045.

    Article  CAS  Google Scholar 

  75. S.L. Zhang, Y.C. Sun, B.R. Ke, Y.L. Li, W. Ji, W.M. Wang, and Z.Y. Fu, Preparation and characterization of TiB2-(supranano-dual-phase) high-entropy alloy cermet by spark plasma sintering, Metals, 8(2018), No. 1, art. No. 58.

  76. Y.L. Li, H.Y. Xu, B.R. Ke, Y.C. Sun, K. Yang, W. Ji, W.M. Wang, and Z.Y. Fu, TEM characterization of a supra-nanodual-phase binder phase in spark plasma sintered TiB2-5wt%HEAs cermet, Ceram. Int., 45(2019), No. 7, p. 9401.

    Article  CAS  Google Scholar 

  77. Z.Z. Fu and R. Koc, Processing and characterization of TiB2-TiNiFeCrCoAl high-entropy alloy composite, J. Am. Ceram. Soc., 100(2017), No. 7, p. 2803.

    Article  CAS  Google Scholar 

  78. I.L. Velo, F.J. Gotor, M.D. Alcalá, C. Real, and J.M. Córdoba, Fabrication and characterization of WC-HEA cemented carbide based on the CoCrFeNiMn high entropy alloy, J. Alloys Compd., 746(2018), p. 1.

    Article  CAS  Google Scholar 

  79. C.M. Lin, C.W. Tsai, S.M. Huang, C.C. Yang, and J.W. Yeh, New TiC/Co1.5CrFeNi1.5Ti0.5 cermet with slow TiC coarsening during sintering, JOM, 66(2014), No. 10, p. 2050.

    Article  CAS  Google Scholar 

  80. Y.X. Guo, X.J. Shang, and Q.B. Liu, Microstructure and properties of in-sttu TiN reinforced laser cladding CoCr2FeNiTix high-entropy alloy composite coatings, Surf. Coat. Technol., 344(2018), p. 353.

    Article  CAS  Google Scholar 

  81. Y.X. Guo, Q.B. Liu, and X.J. Shang, In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding, Rare Met., 39(2020), No. 10, p. 1190.

    Article  CAS  Google Scholar 

  82. E. Colombini, M.L. Gualtieri, R. Rosa, F. Tarterini, M. Zadra, A. Casagrande, and P. Veronesi, SPS-assisted synthesis of SiCp reinforced high entropy alloys: Reactivity of SiC and effects of pre-mechanical alloying and post-annealing treatment, Powder Metall., 61(2018), No. 1, p. 64.

    Article  CAS  Google Scholar 

  83. X.Y. Liu, L. Zhang, and Y. Xu, Microstructure and mechanical properties of graphene reinforced Fe50Mn30Co10Cr10 high-entropy alloy composites synthesized by MA and SPS, Appl. Phys. A, 123(2017), No. 9, art. No. 567.

  84. Q.C. Fan, B.S. Li, and Y. Zhang, The microstructure and properties of (FeCrNiCo)AlxCuy high-entropy alloys and their TiC-reinforced composites, Mater. Sci. Eng. A, 598(2014), p. 244.

    Article  CAS  Google Scholar 

  85. W.Q. Wu, R. Zhou, B.Q. Wei, S. Ni, Y. Liu, and M. Song, Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting, Mater. Charact., 144(2018), p. 605.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Key Research and Development Plan of China (No. 2017YF130310400), the National Natural Science Foundation of China (Nos. 51521001 and 51902233), the Self-determined and Innovative Research Funds of WHUT (Nos. 2018III020 and 2018IVA094), and the Students Innovation and Entrepreneurship Training Program of WHUT (Nos. 2018CLA127 and 20181049701037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Ji or Zheng-yi Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, Br., Sun, Yc., Zhang, Y. et al. Powder metallurgy of high-entropy alloys and related composites: A short review. Int J Miner Metall Mater 28, 931–943 (2021). https://doi.org/10.1007/s12613-020-2221-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-2221-y

Keywords

Navigation