Skip to main content
Log in

A Discrete-Time Model for Consumer–Resource Interaction with Stability, Bifurcation and Chaos Control

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Keeping in mind the interactions between budmoths and the quality of larch trees located in the Swiss Alps (a mountain range in Switzerland), a discrete-time model is proposed and studied. The novel model is proposed with implementation of a nonlinear functional response that incorporates plant quality. The proposed functional response is validated with real observed data of larch budmoth interactions. Furthermore, we investigate the qualitative behavior of the proposed discrete-time system with interactions between budmoths and the quality of larch trees. Proofs of the boundedness of solutions, and the existence of fixed points and their topological classification are carried out. It is proved that the system experiences period-doubling bifurcation at its positive fixed point using the center manifold theorem and normal forms theory. Moreover, existence and direction for the torus bifurcation are also investigated for larch budmoth interactions. Bifurcating and fluctuating behaviors of the system are controlled through utilization of chaos control strategies. Numerical simulations are presented to demonstrate the theoretical findings. At the end, theoretical investigations are validated with field and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ginzburg, L.R., Taneyhill, D.E.: Population cycles of forest Lepidoptera: a maternal effect hypothesis. J. Anim. Ecol. 63, 79–92 (1994)

    Article  Google Scholar 

  2. Myers, J.H.: Can a general hypothesis explain population cycles of forest Lepidoptera? Adv. Ecol. Res. 18, 179–242 (1988)

    Article  Google Scholar 

  3. Baltensweiler, W., Rubli, D.: Dispersal: an important driving force of the cyclic population dynamics of the larch bud moth. For. Snow Landsc. Res. 74(1), 3–153 (1999)

    Google Scholar 

  4. Wermelinger, B., Forster, B., Nievergelt, D.: Cycles and importance of the larch budmoth. WSL Fact Sheet 61, 1–12 (2018)

    Google Scholar 

  5. Zimmer, C.: Life after chaos. Science 284, 83–86 (1999)

    Article  Google Scholar 

  6. Esper, J., Buntgen, U., Frank, D.. C., Nievergelt, D., Liebhold, A.: 1200 years of regular outbreaks in alpine insects. Proc. R. Soc. Lond. Ser. B 274, 671–679 (2007)

    Google Scholar 

  7. Konter, O., Esper, J., Liebhold, A., Kyncl, T., Schneider, L., Duthorn, E., Buntgen, U.: Tree-ring evidence for the historical absence of cyclic larch budmoth outbreaks in the Tatra Mountains. Trends. Ecol. Evol. 29, 809–814 (2015)

    Google Scholar 

  8. Baltensweiler, W., Fischlin, A.: The larch budmoth in the Alps. In: Berryman, A. (ed.) Dynamics of Forest Insect Populations: Patterns, Causes, Implications, pp. 331–351. Plenum, New York (1988)

    Chapter  Google Scholar 

  9. Baltensweiler, W.: Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850. Oecologia 94, 62–66 (1993)

    Article  Google Scholar 

  10. Berryman, A.A.: What causes population cycles of forest Lepidoptera? Trends. Ecol. Evol. 11, 28–32 (1996)

    Article  Google Scholar 

  11. Battipaglia, G., et al.: Long-term effects of climate and land-use change on larch budmoth outbreaks in the French Alps. Clim. Res. 62, 1–14 (2014)

    Article  Google Scholar 

  12. Turchin, P.: Complex Population Dynamics. Princeton University Press, New Jersey (2003)

    MATH  Google Scholar 

  13. Jang, S.R.-J., Johnson, D.M.: Dynamics of discrete-time larch budmoth population models. J. Biol. Dyn. 3, 209–223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jang, S.R.-J., Yu, J.-L.: Models of plant quality and larch budmoth interaction. Nonlinear Anal. Theory Methods Appl. 71(12), e1904–e1908 (2009)

    Article  MATH  Google Scholar 

  15. De Silva, T.M.M., Jang, S.R.-J.: Period-doubling and Neimark–Sacker bifurcations in a larch budmoth population model. J. Differ. Equ. Appl. 23(10), 1619–1639 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Iyengar, S.V., Balakrishnan, J., Kurths, J.: Impact of climate change on larch budmoth cyclic outbreaks. Sci. Rep. 6, 27845 (2016)

    Article  Google Scholar 

  17. Balakrishnan, J., Iyengar, S.V., Kurths, J.: Missing cycles: effect of climate change on population dynamics. Indian Acad. Sci. Conf. Ser. 1(1), 93–99 (2017)

    Google Scholar 

  18. Ali, I., Saeed, U., Din, Q.: Bifurcation analysis and chaos control in a discrete-time plant quality and larch budmoth interaction model with Ricker equation. Math. Methods Appl. Sci. 42(18), 7395–7410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yang, X.: Uniform persistence and periodic solutions for a discrete predatorprey system with delays. J. Math. Anal. Appl. 316, 161–177 (2006)

    Article  MathSciNet  Google Scholar 

  20. Carr, J.: Application of Center Manifold Theory. Springer, New York (1981)

    Book  MATH  Google Scholar 

  21. Guzowska, M., Luís, R., Elaydi, S.: Bifurcation and invariant manifolds of the logistic competition model. J. Differ. Equ. Appl. 17(12), 1851–1872 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Luís, R., Elaydi, S., Oliveira, H.: Stability of a Ricker-type competition model and the competitive exclusion principle. J. Biol. Dyn. 5(6), 636–660 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Karydas, N., Schinas, J.: The center manifold theorem for a discrete system. Appl. Anal. 44(3–4), 267–284 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kulenović, M.R.S., Merino, O.: Invariant manifolds for competitive discrete systems in the plane. Int. J. Bifurc. Chaos 20(8), 2471–2486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Psarros, N., Papaschinopoulos, G., Schinas, C.J.: Semistability of two systems of difference equations using centre manifold theory. Math. Methods Appl. Sci. 39(18), 5216–5222 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  27. Robinson, C.: Dynamical Systems: Stability. Symbolic Dynamics and Chaos, Boca Raton, New York (1999)

  28. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    MATH  Google Scholar 

  29. Wan, Y.H.: Computation of the stability condition for the Hopf bifurcation of diffeomorphism on \(R^2\). SIAM. J. Appl. Math. 34, 167–175 (1978)

    Article  MathSciNet  Google Scholar 

  30. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (1997)

    Google Scholar 

  31. Din, Q.: Stability, bifurcation analysis and chaos control for a predator-prey system. J. Vib. Control 25(3), 612–626 (2019)

    Article  MathSciNet  Google Scholar 

  32. Din, Q., Shabbir, M.S., Khan, M.A., Ahmad, K.: Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response. J. Biol. Dyn. 13(1), 481–501 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Abbasi, M.. A., Din, Q.: Under the influence of crowding effects: stability, bifurcation and chaos control for a discrete-time predator–prey model. Int. J. Biomath. 12(04), 1950044 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Din, Q., Hussain, M.: Controlling chaos and Neimark–Sacker bifurcation in a host-parasitoid model. Asian J. Control 21(3), 1202–1215 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Din, Q., Iqbal, M.A.: Bifurcation analysis and chaos control for a discrete-time enzyme model. Z. Naturforsch. A 74(1), 1–14 (2019)

    Article  Google Scholar 

  36. Ishaque, W., Din, Q., Taj, M., Iqbal, M.A.: Bifurcation and chaos control in a discrete-time predator-prey model with nonlinear saturated incidence rate and parasite interaction. Adv. Differ. Equ. 2019, 28 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Elsayed, E.M., Din, Q.: Period-doubling and Neimark–Sacker bifurcations of plant-herbivore models. Adv. Differ. Equ. 2019, 271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Din, Q.: A novel chaos control strategy for discrete-time Brusselator models. J. Math. Chem. 56(10), 3045–3075 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Din, Q.: Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. Din, Q., Donchev, T., Kolev, D.: Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)

    MathSciNet  Google Scholar 

  41. Din, Q., Saeed, U.: Bifurcation analysis and chaos control in a host-parasitoid model. Math. Method Appl. Sci. 40(14), 5391–5406 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Din, Q.: Qualitative analysis and chaos control in a density-dependent host-parasitoid system. Int. J. Dyn. Control 6(2), 778–798 (2018)

    Article  MathSciNet  Google Scholar 

  43. Din, Q.: Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23(4), 741–762 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Din, Q., Haider, K.: Discretization, bifurcation analysis and chaos control for Schnakenberg model. J. Math. Chem. 58(8), 1615–1649 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Din, Q., Saleem, N., Shabbir, M.S.: A class of discrete predator–prey interaction with bifurcation analysis and chaos control. Math. Model. Nat. Phenom. 15, 60 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Luo, X.S., Chen, G.R., Wang, B.H., Fang, J.Q.: Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fract. 18(4), 775–783 (2003)

    Article  MATH  Google Scholar 

  48. Baltensweiler, W., Weber, U.M., Cherubini, P.: Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos 117, 161–172 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the main editor and anonymous referees for their valuable comments and suggestions leading to improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Din.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Calculation Related to PDB

Appendix A: Calculation Related to PDB

$$\begin{aligned} m_{13}= & {} -\frac{r_0 (2 k-r_0 x^*)}{2 k^2},\ m_{14}=\frac{a r_0 (k-r_0 x^*)}{k (a+y^*)^2},\ m_{15}=\frac{a r_0 x^* (a r_0-2 a-2 y^*)}{2 (a+y^*)^4},\\ m_{16}= & {} \frac{r_0^2 (3 k-r_0 x^*)}{6 k^3},\ m_{17}=-\frac{a r_0^2 (2 k-r_0 x^*)}{2 k^2 (a+y^*)^2},\ m_{18}=\frac{a r_0 (a r_0-2 a-2 y^*) (k-r_0 x^*)}{2 k (a+y^*)^4},\\ m_{19}= & {} \frac{1}{3} x^* \left( \frac{a^3 r_0^3}{2 (a+y^*)^6}-\frac{3 a^2 r_0^2}{(a+y^*)^5}+\frac{3 a r_0}{(a+y^*)^4}\right) ,\\ m_1= & {} \frac{a x^* (r_0 x^*-2 k)+y^* \left( k^2-k (r_0+2) x^*+r_0 x^{*2}\right) }{k^2 (a+y^*)},\\ m_2= & {} \frac{a x^* (a (k-r_0 x^*)+y^* (k r_0+k-r_0 x^*))}{k (a+y^*)^3},\\ m_3= & {} \frac{y^* \left( -2 k^2 (r_0+1)+k r_0 (r_0+4) x^*-r_0^2 x^{*2}\right) -a \left( 2 k^2-4 k r_0 x^*+r_0^2 x^{*2}\right) }{2 k^3 (a+y^*)},\\ m_5= & {} \frac{a \left( a \left( k^2-3 k r_0 x^*+r_0^2 x^{*2}\right) +y^* \left( k^2 (r_0+1)-k r_0 (r_0+3)x^*+r_0^2 x^{*2}\right) \right) }{k^2 (a+y^*)^3},\\ m_4= & {} \frac{a x^* (a (r_0-1)-y^*)}{(a+y^*)^4},\ m_{23}=\frac{c d}{(c+x^*)^3},\ m_{24}=-\frac{c d}{(c+x^*)^4}. \end{aligned}$$
$$\begin{aligned} \phi _1\left( x,y,\bar{r}\right)= & {} -\left( {\frac{m_{{13}}m_{{11}}+m_{{23}}m_{{12}}-m_{{13}}\mu _{{2}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) \,{p}^{2}+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{14}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) p q\\&+ \left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{15}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) q^2\\&-\left( \frac{m_{{11}}m_{{16}}+m_{{12}}m_{{24}}-m_{{16}}\mu _{{2}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }\right) {p}^{3}+ \left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{17}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) {p}^{2}q\\&+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{18}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) p q^2\\&+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{19}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) q^3+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{1}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) p\bar{r}+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{2}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) q\bar{r}\\&+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{3}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) \bar{r}p^2+\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{4}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) \bar{r}q^2 +\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{5}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}\right) \bar{r}pq\\&+O\left( (|x|+|y|+|\bar{r}|)^4\right) ,\\ \psi _1\left( x,y,\bar{r}\right)= & {} \left( {\frac{ \left( 1+m_{{11}} \right) m_{{13}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}+{\frac{m_{{23}}}{\mu _{{2}}+1}}\right) \,{p}^{2}+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{14}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}\right) p q+ \left( {\frac{ \left( 1+m_{{11}} \right) m_{{15}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}\right) q^2\\&+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{16}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}+{\frac{m_{{24}}}{\mu _{{2}}+1}}\right) {p}^{3}+ \left( {\frac{ \left( 1+m_{{11}} \right) m_{{17}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}\right) {p}^{2}q+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{18}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}\right) p q^2\\&+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{19}}}{m_{{12}} \left( \mu _{{2}} +1 \right) }}\right) q^3+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{1}}}{m_{{12}} \left( \mu _{{2}}+ 1 \right) }}\right) p\bar{r}+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{2}}}{m_{{12}} \left( \mu _{{2}}+ 1 \right) }}\right) q\bar{r}\\&+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{3}}}{m_{{12}} \left( \mu _{{2}}+ 1 \right) }}\right) \bar{r}p^2+\left( {\frac{ \left( 1+m_{{11}} \right) m_{{4}}}{m_{{12}} \left( \mu _{{2}}+ 1 \right) }}\right) \bar{r}q^2 +\left( {\frac{ \left( 1+m_{{11}} \right) m_{{5}}}{m_{{12}} \left( \mu _{{2}}+ 1 \right) }}\right) \bar{r}pq\\&+O\left( (|x|+|y|+|\bar{r}|)^4\right) .\\ d_1= & {} \left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{13}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}-{\frac{m_{{23}}}{\mu _{{2}}+1}} \right) m_{12}^{2}-{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{ {14}} \left( 1+m_{{11}} \right) }{\mu _{{2}}+1}}\\&+{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{15}} \left( 1+m_{{11}} \right) ^{2}}{m_{{12}} \left( \mu _{{2}}+1 \right) }},\\ d_2= & {} {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{1}}}{\mu _{{2}}+1}}-{ \frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{2}} \left( 1+m_{{11}} \right) }{m_{{12}} \left( \mu _{{2}}+1 \right) }},\\ d_3= & {} {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{12}}m_{{3}}}{\mu _{{2}}+ 1}}-{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{5}} \left( 1+m_{{11 }} \right) }{\mu _{{2}}+1}}+{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{1}}l_{{1}}}{\mu _{{2}}+1}}\\&+{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{4}} \left( 1+m_{{11}} \right) ^{2}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}+{\frac{ \left( \mu _{{2}}-m_{{11}} \right) ^{2}m_{{2}}l_{{1}}}{m_{{12}} \left( \mu _{{2 }}+1 \right) }}\\&+2\, \left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{13}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}-{\frac{m_{{23}}}{\mu _{{2}}+1}} \right) m_{12}^{2}l_{{2}}\\&+{\frac{ \left( \mu _{{2}}-m_{{11}} \right) ^{2}m_{{14}}l_{{2}}}{\mu _{{ 2}}+1}}-{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{14}}l_{{2}} \left( 1+m_{{11}} \right) }{\mu _{{2}}+1}}\\&-2\,{\frac{ \left( \mu _{{2} }-m_{{11}} \right) ^{2}m_{{15}} \left( 1+m_{{11}} \right) l_{{2}}}{m_{ {12}} \left( \mu _{{2}}+1 \right) }},\\ d_4= & {} {\frac{ \left( \mu _{{2}}-m_{{11}} \right) l_{{2}} \left( m_{{1}}m_{{ 12}}-m_{{2}}m_{{11}}+m_{{2}}\mu _{{2}} \right) }{m_{{12}} \left( \mu _{{ 2}}+1 \right) }}, \end{aligned}$$

and

$$\begin{aligned} \begin{aligned} d_5&=\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{16}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}-{\frac{m_{{24}}}{\mu _{{2}}+1}} \right) m_{12}^{3}-{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{ {12}}m_{{17}} \left( 1+m_{{11}} \right) }{\mu _{{2}}+1}}\\&\quad +2\left( {\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{13}}}{m_{{12 }} \left( \mu _{{2}}+1 \right) }}-{\frac{m_{{23}}}{\mu _{{2}}+1}} \right) m_{12}^{2}l_{{1}}+{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{18}} \left( 1+m_{{11}} \right) ^{2}}{\mu _{{2}}+1}}\\&\quad -{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{14}}l_{{1}} \left( 1+m_ {{11}} \right) }{\mu _{{2}}+1}}-{\frac{ \left( \mu _{{2}}-m_{{11}} \right) m_{{19}} \left( 1+m_{{11}} \right) ^{3}}{m_{{12}} \left( \mu _ {{2}}+1 \right) }}\\&\quad +{\frac{ \left( \mu _{{2}}-m_{{11}} \right) ^{2}m_{{14}}l_{{1}}}{\mu _{{2}}+1}}-{\frac{ 2\left( \mu _{{2}}-m_{{11}} \right) ^{2}m_{{15}} \left( 1+m_ {{11}} \right) l_{{1}}}{m_{{12}} \left( \mu _{{2}}+1 \right) }}. \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Q., Khan, M.I. A Discrete-Time Model for Consumer–Resource Interaction with Stability, Bifurcation and Chaos Control. Qual. Theory Dyn. Syst. 20, 56 (2021). https://doi.org/10.1007/s12346-021-00488-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00488-4

Keywords

Mathematics Subject Classification

Navigation