Skip to main content
Log in

Molecular identification and morphological variations of Dermacentor albipictus collected from two deer species in northern Mexico

  • Published:
Experimental and Applied Acarology Aims and scope Submit manuscript

Abstract

In total, 57 ticks were collected from six white-tailed deer (Odocoileus virginianus) and three mule deer (O. hemionus) in northern Mexico during the 2017, 2018 and 2019 hunting seasons. Morphological features of adult male and female ticks were observed and photographed using a stereo-microscope and scanning electron micrography. The ticks were identified as Dermacentor albipictus based on taxonomic keys. Molecular analysis using DNA amplification of the 16S rDNA and cytochrome oxidase 1 (COI) genes was employed to resolve the phylogenetic relationships from 18 strains of Dermacentor species. Bayesian phylogenetic analysis was performed in order to obtain a phylogenetic tree based on the concatenated sequence in the D. albipictus clade. The geometric morphometric analysis compared the body shape of ticks collected from specimens of two deer species by analyzing nine dorsal and ventral landmarks from both males and females. The results suggest that body shape variation in dorsal structures might be related to the host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addison EM, Johnson FJ, Fyvie A (1979) Dermacentor albipictus on moose (Alces alces) in Ontario. J Wildl Dis 15(2):281–284

    CAS  PubMed  Google Scholar 

  • Arnqvist G, Martensson T (1998) Measurement error in geometric morphometrics: empirical strategies to assess and reduce its impact on measures of shape. Acta Zool Acad Sci Hungaricae 44:73–96

    Google Scholar 

  • Baer-Lehman ML, Light T, Fuller NW, Barry-Landis KD, Kindlin CM, Stewart RL (2012) Evidence for competition between Ixodes scapularis and Dermacentor albipictus feeding concurrently on white-tailed deer. Exp Appl Acarol 58(3):301–314

    PubMed  Google Scholar 

  • Baldridge GD, Scoles GA, Burkhardt NY, Schloeder B, Kurtti TJ, Munderloh UG (2009) Transovarial transmission of Francisella-like endosymbionts and Anaplasma phagocytophilum variants in Dermacentor albipictus (Acari: Ixodidae). J Med Entomol 46(3):625–632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Betancur OH, Betancourt AE, Giraldo CR (2015) Importance of ticks in the transmission of zoonotic agents. Rev MVZ Córdoba 20:5053–5067

    Google Scholar 

  • Bishopp FC, Trembley HL (1945) Distribution and host of certain North American ticks. J Parasitol 31(1):1–54

    Google Scholar 

  • Contreras J, Mellink E, Martínez R, Medina G (2007) Parásitos y enfermedades del venado bura (Odocoileus hemionus fuliginatus) en la parte norte de la sierra San Pedro Mártir, Baja California, México. Rev Mex Mastozoo 11:8–20

    Google Scholar 

  • Cortinas MR, Kitron U (2006) County-level surveillance of white-tailed deer infestation by Ixodes scapularis and Dermacentor albipictus (Acari: Ixodidae) along the Illinois river. J Med Entomol 43(5):810–819

    PubMed  Google Scholar 

  • Crosbie PR, Boyce WM, Rodwell TC (1998) DNA Sequence variation in Dermacentor hunteri and estimated phylogenies of Dermacentor spp. (Acari: Ixodidae) in the New World. J Med Entomol 35(3):277–288

    CAS  PubMed  Google Scholar 

  • Cruickshank RH (2002) Molecular markers for the phylogenetics of mites and ticks. Syst Appl Acarol 7(1):3

    Google Scholar 

  • Da Silva-Ramos S, Rickard SJ (2012) Discriminant Function Analysis. In: The Encyclopedia of Applied Linguistics. Blackwell Publishing, New York. https://doi.org/10.1002/9781405198431.wbeal0335

  • Dantas-torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vector 3(26):1–11

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dergousoff SJ, Chilton NB (2007) Differentiation of three species of ixodid tick, Dermacentor andersoni, D. variabilis and D. albipictus, by PCR-based approaches using markers in ribosomal DNA. Mol Cell Probes 21(5–6):343–348

    CAS  PubMed  Google Scholar 

  • Dietrich M, Beati L, Elguero E, Boulinier T, McCoy KD (2013) Body size and shape evolution in host races of the tick Ixodes uriae. Biol J Linn Soc 108(2):323–334

    Google Scholar 

  • Drew ML, Samuel WM (1985) Factors affecting transmission of larval winter ticks, Dermacentor albipictus (Packard), to moose, Alces alces L., in Alberta, Canada. J Wildl Dis 21(3):274–282

    CAS  PubMed  Google Scholar 

  • Durden LA, Luckhart S, Mullen GR, Smith S (1991) Tick infestations of white-tailed deer in Alabama. J Wildl Dis 27(4):606–614

    CAS  PubMed  Google Scholar 

  • Estrada-Peña A, Jongejan F (1999) Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission. Exp Appl Acarol 23:685–715

    PubMed  Google Scholar 

  • Goddard J (2002) A ten-year study of tick biting in mississippi: implications for human disease transmission. J Agromed. 8(2):25–32

    Google Scholar 

  • Gray JS, Kahl O, Lane RS, Levin ML, Tsao JI (2016) Diapause in ticks of the medically important Ixodes ricinus species complex. Ticks Tick Borne Dis 7(5):992–1003

    PubMed  PubMed Central  Google Scholar 

  • Guglielmone A, Robbins RG, Apanaskevich DA, Petney TN, Estrada-Peña A, Horak IG (2014) The hard ticks of the world. Springer, London

    Google Scholar 

  • Guzmán-Cornejo C, Robbins RG, Guglielmone AA, Montiel-Parra G, Rivas G, Pérez TM (2016) The Dermacentor (Acari, Ixodida, ixodidae) of Mexico: Hosts, geographical distribution and new records. ZooKeys 569:1–22

    Google Scholar 

  • Hooker WA, Bishop FC, Wood HP (1912) The life history and bionomics of some North American ticks. Bull Bureau Entomol. https://doi.org/10.5962/bhl.title.65064

    Article  Google Scholar 

  • Horak IG, Camicas J, Keirans JE (2003) The Argasidae, Ixodidae and Nuttalliellidae (Acari: Ixodida): a world list of valid tick names. Exp Appl Acarol 28:27–54

    Google Scholar 

  • Hutcheson HJ, Oliver JH, Houck MA, Strauss RE (1995) Multivariate morphometric discrimination of nymphal and adult forms of the blacklegged tick (Acari: Ixodidae), a principal vector of the agent of Lyme disease in eastern North America. J Med Entomol 32(6):827–842

    CAS  PubMed  Google Scholar 

  • Ivanova LB, Tomova A, González-Acuña D, Murúa R, Moreno CX, Hernández C, Cabello FC et al (2013) Borrelia chilensis, a new member of the Borrelia burgdorferi sensu lato complex that extends the range of this genospecies in the Southern Hemisphere. Environ Microbiol Rep 16(4):1069–1080

    Google Scholar 

  • Josek T, Allan BF, Alleyne M (2017) Morphometric analysis of chemoreception organ in male and female ticks (Acari: Ixodidae). J Med Entomol 55(3):547–552

    Google Scholar 

  • Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357

    PubMed  Google Scholar 

  • Kollars TM, Kengluecha A (2001) Spotted Fever Group Rickettsia in Dermacentor variabilis (Acari: Ixodidae) Infesting Raccoons (Carnivora: Procyonidae) and Opossums (Marsupialia: Didelphimorphidae) in Tennessee. J Med Entomol 38(4):601–602

    PubMed  Google Scholar 

  • Kollars TM, Oliver JH, Masters EJ, Kollars PG, Durden LA (2000) Host utilization and seasonal occurrence of Dermacentor species (Acari: Ixodidae) in Missouri, USA. Exp Appl Acarol 24:631–632

    PubMed  Google Scholar 

  • Leo SST, Pybus MJ, Sperling FAH (2010) Deep mitochondrial DNA lineage divergences within alberta populations of Dermacentor albipictus (Acari: Ixodidae) do not indicate distinct species. J Med Entomol 47(4):565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunardi RR, Benítez HA, Câmara TP, Gomes LP, Arrais-Silva WW (2017) Head shape variation in response to diet in Triatoma williami (Hemiptera, Reduviidae: Triatominae), a possible Chagas disease vector of legal Amazônia. Zool Anz 267:187–193

    Google Scholar 

  • Mooring MS, Samuel WM (1999) Premature loss of winter hair in free-ranging moose (Alces alces) infested with winter ticks (Dermacentor albipictus) is correlated with grooming rate. Can J Zool 77(1):148–156

    Google Scholar 

  • Mooring MS, Benjamin JE, Harte CR, Herzog NB (2000) Testing the interspecific body size principle in ungulates: the smaller they come, the harder they groom. Anim Behav 60(1):35–45

    CAS  PubMed  Google Scholar 

  • Musante AR, Pekins PJ, Scarpitti DL (2007) Metabolic impacts of winter tick infestations on calf moose. Alces 43:101–110

    Google Scholar 

  • Packard AS (1869) List of hymenopterous and lepidopterous insects collected by the Smithsonian expedition to South America, under Prof. James Orton. (Appendix to the report on Articulates). In: Annual report to the trustees of the peabody academy of science, vol 1, pp 56–69

  • Rohlf FJ (2013) TPSdig, v.2.26. State University, Stony Brook

  • Romero-Castañón S, Ferguson BG, Güiris D, González D, López S, Paredes A, Weber M (2008) Comparative parasitology of wild and domestic ungulates in the selva comparative parasitology of wild and domestic ungulates in the Selva Lacandona, Chiapas, Mexico. Comp Parasitol 75(1):115–126

    Google Scholar 

  • Semtner PJ, Hair JA (1973) The ecology and behavior of the lone star tick (Acarina: Ixodidae) IV. Abundance and seasonal distribution in different habitat types. J Med Entomol 10(6):618–628

    CAS  PubMed  Google Scholar 

  • Slice DE (2007) Geometric morphometrics. Annu Rev Anthropol 36:261–281

    Google Scholar 

  • Sonenshine DE, Roe RM (2014) Biology of ticks, vol 1. Oxford University Press, New York

    Google Scholar 

  • Toledo Á, Olmeda AS, Escudero R, Jado I, Valcárcel F, Casado-Nistal MA et al (2009) Tick-borne zoonotic bacteria in ticks collected from central Spain. Am J Trop Med Hyg 81(1):67–74

    CAS  PubMed  Google Scholar 

  • Wikswo ME, Hu R, Dasch GA, Krueger L, Arugay A, Jone K, Eremeeva ME et al (2008) Detection and identification of spotted fever group rickettsiae in Dermacentor species from Southern California. J Med Entomol 45(3):509–516

    CAS  PubMed  Google Scholar 

  • Zahler M, Gothe R, Rinder H (1995) Genetic evidence against a morphologically suggestive conspecificity of Dermacentor reticulatus and D. marginatus (Atari: Ixodidae). Int J Parasitol 7519(12):141–1419

    Google Scholar 

  • Zelditch ML, Swiderski DL, Sheets HD, Fink WL (2004) Geometric morphometrics for biologists: a primer. Academic Press, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fondequip EQM170124. The authors appreciate help from MC. Carolina Silva de la Fuente, for technical and logistical support from Universidad De Concepción, Laboratorio de Parásitos y Enfermedades de Fauna Silvestre Chillán, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica Escárcega-Ávila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montiel-Armendáriz, S., Verdugo, C., Juache-Villagrana, A.E. et al. Molecular identification and morphological variations of Dermacentor albipictus collected from two deer species in northern Mexico. Exp Appl Acarol 84, 473–484 (2021). https://doi.org/10.1007/s10493-021-00613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10493-021-00613-7

Keywords

Navigation