Skip to main content

Advertisement

Log in

ZS-1 Zeolite as a Highly Efficient and Reusable Catalyst for Facile Synthesis of 1-amidoalkyl-2-naphthols Under Solvent-Free Conditions

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Efficient and reusable ZS-1 zeolite as a novel catalyst was successfully synthesized by the hydrothermal method. Characterizations of catalysts were carried out using diverse analysis techniques such as XRD, FT-IR, FESEM, EDAX, HRTEM, BET, and NH3TPD. Promoted as an environment-friendly protocol for the facile synthesis of various substituted 1-amidoalkyl-2-naphthols through the reaction of β-naphthol, aldehyde, and amides under solvent-free conditions. This catalyst provides many advantages such as shorter reaction times, operational simplicity, reusability, an excellent yield of the product, facile work-up, and easily recoverable. Moreover, the recovered catalyst can be recycled and reused for the next five runs without significant loss of catalytic activity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

Similar content being viewed by others

Data Availability

Manuscript including all data correct and unpublished.

References

  1. Singh RK, Duvedi R (2018) Environment-friendly green chemistry approaches for an efficient synthesis of 1-amidoalkyl-2-naphthols catalyzed by tannic acid. Arab J Chem 11:91–98. https://doi.org/10.1016/j.arabjc.2014.08.022

    Article  CAS  Google Scholar 

  2. Zhang Q, Gao Y-H, Qin S-L, Wei H-X (2017) Facile one-pot synthesis of amidoalkyl naphtholsand benzopyrans using magnetic nanoparticle-supported acidic ionic liquid as a highly efficientand reusable catalyst. Catalysts 7:351. https://doi.org/10.3390/catal7110351

    Article  CAS  Google Scholar 

  3. Erfaninia N, Tayebee R, Foletto EL, Amini MM, Dusek M, Zonoz M (2018) Preparation of magnetically recyclable ZnFe2O4 nanoparticles by easy single-step co-precipitation methodand their catalytic performance in the synthesis of 2-aminothiophenes. Appl Organomet Chem 32:1–7. https://doi.org/10.1002/aoc.4047

    Article  CAS  Google Scholar 

  4. Li B, Tayebee R, Esmaeili E, Namaghi MS, Maleki B (2020) Selective photocatalytic oxidation of aromatic alcohols to aldehydes with air by magnetic WO3ZnO/Fe3O4. In situ photochemical synthesis of 2-substituted benzimidazoles. RSC Adv 10:40725–40738. https://doi.org/10.1039/D0RA08403D

    Article  CAS  Google Scholar 

  5. Rekunge DS, Bendale HS, Chaturbhuj GU (2018) Activated Fuller’s earth: an efficient, inexpensive, environmentallybenign, and reusable catalyst for rapid solvent-free synthesis of1-(amido/amino)alkyl-2-naphthols. Monatsh Chem 149:1991–1997. https://doi.org/10.1007/s00706-018-2247-2

    Article  CAS  Google Scholar 

  6. Hashemzadeh A, Amini MM, Tayebee R, Sadeghian A, Durndell LJ, Isaacs MA, Osatiashtiani A, Parlett CMA (2017) Amagnetically separable H3PW12O40@Fe3O4/EN-MIL-101 catalyst for the one-pot solventless synthesis of 2H-indazolo [2,1-b] phthalazine-triones. Mol Catal 440:96–106. https://doi.org/10.1016/j.mcat.2017.07.010

    Article  CAS  Google Scholar 

  7. Tayebee R, Pejhan A, Ramshini H et al (2018) Equisetum arvense as an abundant source of silica nanoparticles. SiO2/H3PW12O40 nanohybrid material as an efficient andenvironmental benign catalyst in the synthesis of 2-amino-4H-chromenes under solvent-free conditions. Appl Organomet Chem 32:e3924. https://doi.org/10.1002/aoc.3924

    Article  CAS  Google Scholar 

  8. Tayebee R, Mojtaba FA, Nasrin E et al (2019) Phosphotungstic acid grafted zeolite imidazolate framework as an effective heterogeneous nanocatalystfor the one-pot solvent-free synthesis of 3,4-dihydropyrimidinones. Appl Organomet Chem. https://doi.org/10.1002/aoc.4959

    Article  Google Scholar 

  9. Benito HE, Alamilla RG, Enríquez JMH et al (2015) Porous silicates modified with zirconium oxide and sulfate ions for alcohol dehydration Reactions. Adv Mater Sci Eng. https://doi.org/10.1155/2015/325463

    Article  Google Scholar 

  10. Mahdizadeh Ghohe N, Tayebee R, Amini MM (2019) Synthesis and characterization of mesoporous Nb-Zr/KIT-6 as a productive catalyst for the synthesis of benzylpyrazolyl coumarins. Mater Chem Phys 223:268–276. https://doi.org/10.1016/j.matchemphys.2018.10.067

    Article  CAS  Google Scholar 

  11. Yang G, Pidko EA, Hensen EJM (2013) Structure, stability, and lewis acidity of mono and double Ti, Zr, and Sn framework substitutions in BEA zeolites: a periodic density functional theory study. J Phys Chem C 117:3976–3986. https://doi.org/10.1021/jp310433r

    Article  CAS  Google Scholar 

  12. Dipake SS, Lande MK, Rajbhoj AS, Gaikwad ST (2021) Zeolite ZSM-11 as a reusable and efficient catalyst promoted improved protocol for synthesis of 2,4,5-triarylimidazole derivatives under solvent-free condition. Res Chem Intermed. https://doi.org/10.1007/s11164-021-04423-9

    Article  Google Scholar 

  13. Gadekar SP, Dipake SS, Gaikwad ST, Lande MK (2018) Solid acid TS-1 catalyst: an efficient catalyst in Knoevenagel condensation for the synthesis of 5-arylidene-2,4-thiazolidinediones/Rhodanines in aqueous medium. Res Chem Intermed 44:7509–7518. https://doi.org/10.1007/s11164-018-3570-2

    Article  CAS  Google Scholar 

  14. Narenji-Sani F, Tayebee R, Chahkandi M (2020) New task-specific and reusable ZIF-like grafted H6P2W18O62 catalyst for the effective esterification of free fatty acids. ACS Omega 5:9999–10010. https://doi.org/10.1021/acsomega.0c00358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moliner M (2014) State of the art of Lewis acid-containing zeolites:lessons fromfine chemistry to new biomasstransformation processes. Dalt Trans 43:4197–4208. https://doi.org/10.1039/c3dt52293h

    Article  CAS  Google Scholar 

  16. KEYSER DJ, Guillem AF (12) (2015) Patent Application Publication (10) Pub. No.: US 2015/0258769 A1 lifted-off layer Patent Application Publication

  17. Lambert SL, 1994, Patent Number: 5,338,527, US005338527A

  18. Cioc RC, Ruijter E, Orru RVA (2014) Multicomponent reactions: advanced tools forsustainable organic synthesis. Green Chem 16:2958–2975. https://doi.org/10.1039/C4GC00013G

    Article  CAS  Google Scholar 

  19. Tayebee R, Fattahi Abdizadeh M, Maleki B, Shahri E (2017) Heteropolyacid-based ionic liquid [Simp] 3PW12O40 nanoparticles as a productive catalyst for the one-pot synthesis of 2H-indazolo [2,1-b] phthalazine-triones under solvent-free conditions. J Mol Liq 241:447–455. https://doi.org/10.1016/j.molliq.2017.06.033

    Article  CAS  Google Scholar 

  20. Tayebee R, Amini MM, Rostamian H, Aliakbari A (2014) Preparation and characterization of a novel Wells–Dawson heteropolyacid-based magneticinorganic–organic nanohybrid catalyst H6P2W18O62/pyridino-Fe3O4 for the efficient synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Dalt Trans 43:1550–1563. https://doi.org/10.1039/C3DT51594J

    Article  CAS  Google Scholar 

  21. Taghrir H, Ghashang M, Biregan MN (2016) Preparation of 1-amidoalkyl-2-naphthol derivatives using bariumphosphate nano-powders. Chin Chem Lett 27:119–126. https://doi.org/10.1016/j.cclet.2015.08.011

    Article  CAS  Google Scholar 

  22. Gupta A, Kour D, Gupta VK, Kapoor KK (2016) Graphene oxide mediated solvent-free three component reaction for the synthesis of 1-amidoalkyl-2-naphthols and 1,2-dihydro-1-arylnaphth [1,2-e][1,3] oxazin-3-on. Tetrahedron Lett 57:4869–4872. https://doi.org/10.1016/j.tetlet.2016.09.067

    Article  CAS  Google Scholar 

  23. Pourmousavi SA, Moghimi P, Ghorbani F, Zamani M (2017) Sulfonated polynaphthalene as an effective and reusable catalyst for the one-pot preparation of amidoalkyl naphthols: DFT and spectroscopic studies. J Mol Struct 1144:87–102. https://doi.org/10.1016/j.molstruc.2017.05.010

    Article  CAS  Google Scholar 

  24. Tayebee R, Amini MM, Akbari M, Aliakbari A (2015) A novel inorganic–organic nanohybrid materialH4SiW12O40/pyridino-MCM-41 as efficient catalystfor the preparation of 1-amidoalkyl-2-naphtholsunder solvent-free conditions. Dalt Trans 44:9596–9609. https://doi.org/10.1039/c5dt00368g

    Article  CAS  Google Scholar 

  25. Gong K, Wang H, Ren X et al (2015) β-Cyclodextrin-butane sulfonic acid: an efficientand reusable catalyst for the multicomponent synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions. Green Chem 17:3141–3147. https://doi.org/10.1039/c5gc00384a

    Article  CAS  Google Scholar 

  26. Nasresfahani Z, Kassaee MZ, Eidi E (2016) Homopiperazine sulfamic acid functionalized mesoporous silica nanoparticles (MSNs-HPZ-SO3H)as an efficient catalyst for one-pot synthesis of1-amidoalkyl-2-naphthols. New J Chem 40:4720–4726. https://doi.org/10.1039/c5nj02974k

    Article  CAS  Google Scholar 

  27. Zolfagharinia S, Kolvari E, Salehi M (2017) Highly efficient and recyclable phosphoric acid functionalized zirconia encapsulated-Fe3O4 nanoparticles: clean synthesis of 1,4-dihydropyridineand 1-amidoalkyl-2-naphthol derivatives. Reac Kinet Mech Cat. https://doi.org/10.1007/s11144-017-1186-y

    Article  Google Scholar 

  28. Kiasat AR, Hemat-Alian L, Saghanezhad SJ (2016) Nano Al2O3: an efficient and recyclable nanocatalystfor the one-pot preparation of 1-amidoalkyl-2-naphthols under solvent-free conditions. Res Chem Intermed 42:915–922. https://doi.org/10.1007/s11164-015-2062-x

    Article  CAS  Google Scholar 

  29. Khodaei MM, Khosropour AR, Moghanian H (2006) A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions. Synlett. https://doi.org/10.1055/s-2006-939034

    Article  Google Scholar 

  30. Shaterian HR, Yarahmadi H, Ghashang M (2009) One-pot synthesis of amidoalkyl naphthols using NaHSO4.SiO2as an efficient and recyclable heterogeneous catalyst. Turkish J Chem 33:449–457. https://doi.org/10.3906/kim-0812-67

    Article  CAS  Google Scholar 

  31. Shaterian HR, Yarahmadi H, Ghashang M (2008) Silica supported perchloric acid (HClO4eSiO2): an efficientand recyclable heterogeneous catalyst for the one-potsynthesis of amidoalkyl naphthols. Tetrahedron 64:1263–1269. https://doi.org/10.1016/j.tet.2007.11.070

    Article  CAS  Google Scholar 

  32. Jesudoss SK, Vijaya JJ, Kaviyarasu K et al (2017) Anti-cancer activity of hierarchical ZSM-5 zeolitessynthesized from rice-based waste materials. RSC Adv 8:481–490. https://doi.org/10.1039/C7RA11763A

    Article  Google Scholar 

  33. Li Y, Sun H, Feng R et al (2015) Synthesis of ZSM-5 zeolite from diatomite for fluid catalyticcracking (FCC) application. Appl Petrochem Res 5:347–353. https://doi.org/10.1007/s13203-015-0113-2

    Article  CAS  Google Scholar 

  34. Gadekar SP, Lande MK (2018) Solid acid catalyst TS-1 zeolite-assisted solvent-free one-pot synthesis of poly-substituted 2,4,6-triaryl-pyridines. Res Chem Intermed 44:3267–3278. https://doi.org/10.1007/s11164-018-3305-4

    Article  CAS  Google Scholar 

  35. Bortun AI, Bortun LN, Clearfield A (1997) Hydrothermal synthesis of sodium zirconium silicatesand characterization of their properties. Chem Mater 9:1854–1864

    Article  CAS  Google Scholar 

  36. Ko YS, Ahn WS (1998) Synthesis and characterization of zirconium silicalite-1. Korean J Chem Eng 15:423–428

    Article  CAS  Google Scholar 

  37. Franklin KR, Lowe BM (1987) Hydrothermal crystallization of piperazine- ZSM-39, vol 7. Butterworth & Co. Ltd, Oxford, pp 0144–2449

    Google Scholar 

  38. Treacy MMJ, Higgins JB (2007) Collection of simulated XRD powder patterns zeolites, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  39. Chen H, Zhang X, Zhang J, Wang Q (2017) Controllable synthesis of hierarchical ZSM-5 for hydro conversion of vegetable oil to aviation fuel-like hydrocarbons. RSC Adv 7:46109–46117. https://doi.org/10.1039/c7ra08867a

    Article  CAS  Google Scholar 

  40. Shao J, Cheng S, Li Z, Huang B (2020) Enhanced catalytic performance of hierarchical MnOx/ZSM-5 catalyst for the low-temperature NH3-SCR. Catalysts 10:311

    Article  CAS  Google Scholar 

  41. Peng B, Zou H, He L, Wang P, Shi Z, Zhu L, Wang R, Zhang Z (2013) Engineering growth defects: a new route towards hierarchical ZSM-5 zeolite with high-density intracrystalline mesopores. CrystEngComm 00:1–3. https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  42. Na J, Liu G, Ding TZG, Hu S, Wang L et al (2013) Synthesis and catalytic performance of ZSM-5/MCM-41 zeolites with varying mesopore size by surfactant-directed recrystallization. Catal Lett 143:267–275

    Article  CAS  Google Scholar 

  43. Subramanian N, Vijaya JJ, Sivasanker S, Arjunan A (2014) Enhanced selectivity to benzaldehyde in the liquid phase oxidationof benzyl alcohol using nanocrystalline ZSM-5 zeolite catalyst. J Porous Mater 21:633–641

    Article  Google Scholar 

  44. Ansari SAMK, Sangshetti JN, Kokare ND (2010) Oxalic acid catalyzed solvent-free synthesis of α-amidoalkyl-β-naphthols. Indian J Chem Technol 17:71–73

    CAS  Google Scholar 

  45. Mahdavinia GH, Bigdeli MA (2009) Wet cyanuric chloride promoted efficient synthesis of amidoalkyl naphthols under solvent-free conditions. Chin Chem Lett 20:383–386. https://doi.org/10.1016/j.cclet.2008.12.018

    Article  CAS  Google Scholar 

  46. Patil SB, Singh PR, Surpur MP, Samant SD (2007) Ultrasound-promoted synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions. Ultrason Sonochem 14:515–518. https://doi.org/10.1016/j.ultsonch.2006.09.006

    Article  CAS  PubMed  Google Scholar 

  47. Nandi GC, Samai S, Kumar R, Singh MS (2009) Atom-efficient and environment-friendly multicomponent synthesisof amidoalkyl naphthols catalyzed by P2O5. Tetrahedron Lett 50:7220–7222. https://doi.org/10.1016/j.tetlet.2009.10.055

    Article  CAS  Google Scholar 

  48. Sheik Mansoor S, Aswin K, Logaiya K, Sudhan SPN (2016) ZrOCl2Æ8H2O: an efficient and recyclable catalystfor the three-component synthesis of amidoalkylnaphthols under solvent-free conditions. J Saudi Chem Soc 20:138–150. https://doi.org/10.1016/j.jscs.2012.06.003

    Article  CAS  Google Scholar 

  49. Kantevari S, Vuppalapati SVN, Nagarapu L (2007) Montmorillonite K10 catalyzed efficient synthesis of amidoalkyl naphthols under solvent free conditions. Catal Commun 8:1857–1862. https://doi.org/10.1016/j.catcom.2007.02.022

    Article  CAS  Google Scholar 

  50. Srihari G, Nagaraju M, Murthy MM (2007) Solvent-free one-pot synthesis of amidoalkyl naphthols catalyzed by silicasulfuric acid. Helv Chim Acta 90:1497–1504. https://doi.org/10.1002/hlca.200790156

    Article  CAS  Google Scholar 

  51. Nagarapu L, Baseeruddin M, Apuri S, Kantevari S (2007) Potassium dodecatungstocobaltate trihydrate (K5CoW12O40.3H2O): a mild and efficient reusable catalyst for the synthesis of amidoalkyl naphthols in solution and under solvent-free conditions. Catal Commun 8:1729–1734. https://doi.org/10.1016/j.catcom.2007.02.008

    Article  CAS  Google Scholar 

  52. Lei M, Ma L, Hu L (2009) Thiamine hydrochloride as a efficient catalyst for the synthesis of amidoalkyl naphthols. Tetrahedron Lett 50:6393–6397. https://doi.org/10.1016/j.tetlet.2009.08.081

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Mr. Sudarshan S. Dipake, gratefully thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi for the award of fellowship and the Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004 (M.S.), India. for support and providing the necessary laboratory facility.

Author information

Authors and Affiliations

Authors

Contributions

SSD-conduct the whole experiment, writing an original draft. SPG-investigation. PBT-investigation. MKL-review and editing. ASR-review and editing. STG-writing, review, and editing.

Corresponding author

Correspondence to Suresh T. Gaikwad.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Consent to Participate

All Authors are agreed for submission.

Consent for Publication

Agreed to submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dipake, S.S., Gadekar, S.P., Thombre, P.B. et al. ZS-1 Zeolite as a Highly Efficient and Reusable Catalyst for Facile Synthesis of 1-amidoalkyl-2-naphthols Under Solvent-Free Conditions. Catal Lett 152, 755–770 (2022). https://doi.org/10.1007/s10562-021-03684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03684-8

Keywords

Navigation