Skip to main content
Log in

In-Situ Fabricating Ag Nanoparticles on TiO2 for Unprecedented High Catalytic Activity of 4-Nitrophenol Reduction

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A facile and green approach was developed to in-situ prepare Ag nanoparticles (AgNPs) on the TiO2. Through the (3-mercaptopropyl)trimethoxysilane (MPTMS), mono-dispersed AgNPs were loaded on TiO2 (AgNPs@MPTMS-TiO2). In the presence of NaBH4, the AgNPs@MPTMS-TiO2 displayed an ultra-high catalytic activity for 4-nitrophenol reduction, of which the apparent kinetic rate constant (kapp) reached up to 394 × 10–3 s−1. Comparing to the best previous performance (kapp = 120 × 10–3 s−1), the obtained Ag-catalysts made a huge progress. Moreover, the catalytic activity of the AgNPs@MPTMS-TiO2 could be optimized via changing series of fabrication parameters including Ag+ precursor amount and MPTMS amount, and reaction time. Various characterization techniques including TEM, HRTEM, XPS, FT-IR and Zeta potential have been utilized to study the material morphology, valance states and surface chemistry. It revealed that the AgNPs were coordinated by MPTMS though R-S–Ag bonds, which could prohibit the AgNPs from self-aggregation. In addition, the R-S–Ag bonds favored reaction of AgNPs with BH4 and thus releasing substantial protons. Consequently, the increasing proton concentration would speed up the transformation from 4-hydroxylaminophenol to 4-aminophenol.

Graphic Abstract

In-situ grow Ag nanoparticles (AgNPs) on (3-mercaptopropyl)trimethoxysilane (MPTMS) modified TiO2 with characters of small size, good distribution and controllable loading. The apparent kinetic rate constant (kapp) reaches as high as 394 × 10–3 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Malengreaux CM, Pirard SL, Bartlett JR, Heinrichs B (2014) Chem Eng J 245:180–190

    Article  CAS  Google Scholar 

  2. Takahashi N, Nakai T, Satoh Y, Katoh Y (1994) Water Res 28:1563–1570

    Article  CAS  Google Scholar 

  3. Kiwi J, Pulgarin C, Peringer P (1994) Appl Catal B Environ 3:335–350

    Article  CAS  Google Scholar 

  4. Eichenbaum G, Johnson M, Kirkland D, O’Neill P, Stellar S, Bielawne J, DeWire R, Areia D, Bryant S, Weiner S, Desai-Krieger D, Guzzie-Peck P, Evans DC, Tonelli A (2009) Regul Toxicol Pharm 55:33–42

    Article  CAS  Google Scholar 

  5. Li J, Liu Q, Ji QQ, Lai B (2017) Appl Catal B Environ 200:633–646

    Article  CAS  Google Scholar 

  6. Arora PK, Srivastava A, Singh VP (2014) J Hazard Mater 266:42–59

    Article  CAS  PubMed  Google Scholar 

  7. Ahn W-Y, Sheeley SA, Rajh T, Cropek DM (2007) Appl Catal B Environ 74:103–110

    Article  CAS  Google Scholar 

  8. Gazi S, Ananthakrishnan R (2011) Appl Catal B Environ 105:317–325

    Article  CAS  Google Scholar 

  9. Wang C, Ciganda R, Salmon L, Gregurec D, Irigoyen J, Moya S, Ruiz J, Astruc D (2016) Angew Chem Int Edit 55:3091–3095

    Article  CAS  Google Scholar 

  10. Martin-Martinez M, Barreiro MFF, Silva AMT, Figueiredo JL, Faria JL, Gomes HT (2017) Appl Catal B Environ 219:372–378

    Article  CAS  Google Scholar 

  11. Zhang G, Gao Y, Zhang Y, Guo Y (2010) Environ Sci Technol 44:6384–6389

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Wang J, Huang W, Tan X, Dong H, Goodman BA, Du H, Lei F, Diao K (2019) Chemosphere 214:821–829

    Article  CAS  PubMed  Google Scholar 

  13. Liu Q-S, Zheng T, Wang P, Jiang J-P, Li N (2010) Chem Eng J 157:348–356

    Article  CAS  Google Scholar 

  14. Cheng T, Zhang D, Li H, Liu G (2014) Green Chem 16:3401–3427

    Article  CAS  Google Scholar 

  15. Saran S, Manjari G, Devipriya SP (2018) J Clean Prod 177:134–143

    Article  CAS  Google Scholar 

  16. Li Y, Wu Y, Gao Y, Sha S, Hao J, Cao G, Yang C (2013) RSC Adv 3:26361–26366

    Article  CAS  Google Scholar 

  17. Kamat PV (2010) J Phys Chem Lett 1:520–527

    Article  CAS  Google Scholar 

  18. Bai W, Nie F, Zheng J, Sheng Q (2014) ACS Appl Mater Inter 6:5439–5449

    Article  CAS  Google Scholar 

  19. Peng F, Wang Q, Shi R, Wang Z, You X, Liu Y, Wang F, Gao J, Mao C (2016) Sci Rep 6:39502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu P, Liao G (2018) Materials (Basel) 11:1616

    Article  Google Scholar 

  21. Zou Y, Jin H, Sun F, Dai X, Xu Z, Yang S, Liao G (2018) ACS Appl Nano Mater 1:2294–2305

    Article  CAS  Google Scholar 

  22. Zhang H, Zhao T, Newland B, Liu W, Wang W, Wang W (2018) Prog Polym Sci 78:47–55

    Article  CAS  Google Scholar 

  23. Li Q, Liao G, Tian J, Xu Z (2018) Macromol Mater Eng 303:1700407

    Article  Google Scholar 

  24. Zou Y, Sun F, Liu C, Yu C, Zhang M, He Q, Xiong Y, Xu Z, Yang S, Liao G (2019) Chem Eng J 357:237–247

    Article  CAS  Google Scholar 

  25. Zhang M, Zou Y, Zhong Y, Liao G, Yu C, Xu Z (2019) ACS Appl Bio Mater 2:630–637

    Article  CAS  PubMed  Google Scholar 

  26. Wang Z, Xu C, Li X, Liu Z (2015) Colloid Surf A 485:102–110

    Article  CAS  Google Scholar 

  27. Zhang W, Sun Y, Zhang L (2015) Ind Eng Chem Res 54:6480–6488

    Article  CAS  Google Scholar 

  28. Li H, Cooper-White JJ (2013) Nanoscale 5:2915–2920

    Article  CAS  PubMed  Google Scholar 

  29. Duan J, Chen S, Jaroniec M, Qiao SZ (2015) ACS Catal 5:5207–5234

    Article  CAS  Google Scholar 

  30. Bulushev DA, Zacharska M, Lisitsyn AS, Podyacheva OY, Hage FS, Ramasse QM, Bangert U, Bulusheva LG (2016) ACS Catal 6:3442–3451

    Article  CAS  Google Scholar 

  31. Onclin S, Ravoo BJ, Reinhoudt DN (2005) Angew Chem Int Edit 44:6282–6304

    Article  CAS  Google Scholar 

  32. Cappelletti G, Ardizzone S, Meroni D, Soliveri G, Ceotto M, Biaggi C, Benaglia M, Raimondi L (2013) J Colloid Interface Sci 389:284–291

    Article  CAS  PubMed  Google Scholar 

  33. Meroni D, Ardizzone S, Cappelletti G, Ceotto M, Ratti M, Annunziata R, Benaglia M, Raimondi L (2011) J Phys Chem C 115:18649–18658

    Article  CAS  Google Scholar 

  34. Meroni D, Lo Presti L, Di Liberto G, Ceotto M, Acres RG, Prince KC, Bellani R, Soliveri G, Ardizzone S (2017) J Phys Chem C 121:430–440

    Article  CAS  Google Scholar 

  35. Jeon EK, Seo E, Lee E, Lee W, Um M-K, Kim B-S (2013) Chem Commun 49:3392–3394

    Article  CAS  Google Scholar 

  36. Guari Y, Thieuleux C, Mehdi A, Reyé C, Corriu RJP, Gomez-Gallardo S (2003) Chem Mater 15:2017–2024

    Article  CAS  Google Scholar 

  37. Arranz A, Palacio C (2005) Surf Sci 588:92–100

    Article  CAS  Google Scholar 

  38. Benito N, Palacio C (2013) J Phys D Appl Phys 47:015308

    Article  Google Scholar 

  39. Yan Z, Fu L, Zuo X, Yang H (2018) Appl Catal B Environ 226:23–30

    Article  CAS  Google Scholar 

  40. Nakao Y, Oradee S, Tukiman H, Tanaka H (2019) In 2019 IEEE regional symposium on micro and nanoelectronics (RSM) (PP 79–82). IEEE.

  41. Ukaji E, Furusawa T, Sato M, Suzuki N (2007) Appl Surf Sci 254:563–569

    Article  CAS  Google Scholar 

  42. Rasalingam S, Kibombo HS, Wu C-M, Budhi S, Peng R, Baltrusaitis J (2013) Catal Commun 31:66–70

    Article  CAS  Google Scholar 

  43. Guo J, Wang J, Gao Y, Wang J, Chang W, Liao S, Qian Z, Liu Y (2017) ACS Sustain Chem Eng 5:10772–10782

    Article  CAS  Google Scholar 

  44. Wunder S, Lu Y, Albrecht M, Ballauff M (2011) ACS Catal 1:908–916

    Article  CAS  Google Scholar 

  45. Liu BH, Li ZP (2009) J Power Sources 187:291–297

    Article  CAS  Google Scholar 

  46. Tian G, Wang W, Mu B, Kang Y, Wang A (2016) J Colloid Interface Sci 473:84–92

    Article  CAS  PubMed  Google Scholar 

  47. Ji T, Chen L, Schmitz M, Bao FS, Zhu J (2015) Green Chem 17:2515–2523

    Article  CAS  Google Scholar 

  48. Hu M, Zhang Z, Luo C, Qiao X (2017) Nanoscale Res Lett 12:435

    Article  PubMed  PubMed Central  Google Scholar 

  49. Islam DA, Chakraborty A, Acharya H (2016) New J Chem 40:6745–6751

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the project of Jilin Institute of Chemical Technology (No. 2020016), and project of Jilin Science and Technology Bureau (No. 2021001363).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Liu, Z., Lan, C. et al. In-Situ Fabricating Ag Nanoparticles on TiO2 for Unprecedented High Catalytic Activity of 4-Nitrophenol Reduction. Catal Lett 152, 912–920 (2022). https://doi.org/10.1007/s10562-021-03671-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03671-z

Keywords

Navigation