Skip to main content

Advertisement

Log in

Impact of vulnerability assumptions and input parameters in urban seismic risk assessment

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This study addresses some critical issues in the selection of input data for probabilistic seismic risk assessment at a local scale, considering available open-source information. It focuses on the derivation of vulnerability curves, which should be consistent with the local hazard and building practices, analysing the effect of (1) the record selection methodology, (2) the regression procedure followed for the analytical vulnerability derivation and (3) the consideration or not of local structural characteristics in the modelling process. It illustrates the significant differences in the results when distinct assumptions and sources of information—global, regional, or local—are used for the analysis. Based on a case study in Medellin, Colombia for assets representing the most vulnerable building classes in the city (unreinforced masonry houses and low code reinforced concrete buildings), accounting for more than 60% of its building stock, the effects of the previously mentioned parameters are studied. It is shown that hazard-consistent record selection is extremely important in the derivation of vulnerability models to use at a local scale, for sites with contributions from different tectonic regimes. Considerable variability is found in risk metrics such as Probable Maximum Loss curves and Average Annual Loss Ratios, rendering crucial the communication to decision-makers of these assumptions and the bias they could generate. Given the hazard characteristics of the site (with common low intensity events) it was seen that the lower tails of vulnerability curves have a large impact in loss results and should be given special attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and material

The following GitLab repository including the capacity/fragility/vulnerability for the Global Earthquake Model was used (https://github.com/lmartins88/global_fragility_vulnerability). The Risk Modeller ToolKit (RMTK) open-source scripts is available in https://github.com/lmartins88/rmtk.

Code availability

Not applicable.

References

  • Acevedo AB, Jaramillo JD, Yepes C, Silva V, Osorio FA, Villar M (2017) Evaluation of the seismic risk of the unreinforced masonry building stock in Antioquia. Colombia Nat Hazards 86(1):31–54. https://doi.org/10.1007/s11069-016-2647-8

    Article  Google Scholar 

  • Acevedo AB, Yepes-Estrada C, González D, Silva V, Mora M, Arcila M, Posada G (2020) Seismic risk assessment for the residential buildings of the major three cities in Colombia: Bogotá, Medellín, and Cali. Earthq Spectra. https://doi.org/10.1193/1.2857544

    Article  Google Scholar 

  • Alcaldía de Medellín (2020) Estadística Catastral. Medellin en Cifras. http://medata.gov.co/medell%C3%ADn-en-cifras/estad%C3%ADstica-catastral. Accessed 1 August 2020. (in Spanish)

  • Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BS, Wooddell KE, Graves RW, Kottke AR, Boore DM, Kishida T (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005. https://doi.org/10.1193/070913EQS197M

    Article  Google Scholar 

  • Baker JW, Jayaram N (2008) Correlation of spectral acceleration values from NGA ground motion models. Earthq Spectra 24(1):299–317. https://doi.org/10.1193/1.2857544

    Article  Google Scholar 

  • Bal IE, Crowley H, Pinho R, Gulay FG (2008) Detailed assessment of structural characteristics of turkish rc building stock for loss assessment models. Soil Dyn Earth Eng 28:914–932. https://doi.org/10.1016/j.soildyn.2007.10.005

    Article  Google Scholar 

  • Bazzurro P, Allin Cornell C (1999) Disaggregation of seismic hazard. Bull Seismol Soc Am 89(2):501–520

    Google Scholar 

  • Bazzurro P, Luco N (2007) Effects of different sources of uncertainty and correlation on earthquake-generated losses. Aust J Civ Eng 4(1):1–14. https://doi.org/10.1080/14488353.2007.11463924

    Article  Google Scholar 

  • Bozorgnia Y, Stewart JP, Abrahamson NA (2020) Data resources for NGA-subduction project. PEER report 2020/02. Pacific Earthquake Engineering Research Center, Berkeley

  • Cornell A (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Article  Google Scholar 

  • Crowley H, Bommer JJ, Pinho R, Bird J (2005) The impact of epistemic uncertainty on an earthquake loss model. Earthq Eng Struct Dyn 34(14):1653–1685

    Article  Google Scholar 

  • Crowley H, Colombi M, Silva V (2014) Epistemic uncertainty in fragility functions for European RC buildings. In: Pitilakis K, Crowley H, Kaynia A (eds) SYNER-G: typology definition and fragility functions for physical elements at seismic risk. Geotechnical, geological and earthquake engineering, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7872-6_4

    Chapter  Google Scholar 

  • Esteva L (1970) Regionalización sísmica de México para fines de ingeniería. Universidad Nacional Autónoma de México, Instituto de Ingeniería (in Spanish)

    Google Scholar 

  • González D (2017) Modelo de Exposición sísmica de viviendas en Medellín. Dissertation. Eafit University. (in Spanish)

  • Harmsen SC (2001) Mean and modal ϵ in the deaggregation of probabilistic ground motion. Bull Seismol Soc Am 91(6):1537–1552

    Article  Google Scholar 

  • Jaimes MA, Candia G (2019) Interperiod correlation model for Mexican interface earthquakes. Earthq Spectra 35(3):1351–1365. https://doi.org/10.1193/080918EQS200M

    Article  Google Scholar 

  • Jayaram N, Baker JW (2009) Correlation model for spatially distributed ground-motion intensities. Earthq Eng Struct Dynam 38(15):1687–1708. https://doi.org/10.1002/eqe.922

    Article  Google Scholar 

  • Jayaram N, Lin T, Baker JW (2011) A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra 27(3):797–815. https://doi.org/10.1193/1.3608002

    Article  Google Scholar 

  • Kalakonas P, Silva V, Mouyiannou A, Rao A (2020) Exploring the impact of epistemic uncertainty on a regional probabilistic seismic risk assessment model. Nat Hazards 104(1):997–1020

    Article  Google Scholar 

  • Kohrangi M, Vamvatsikos D, Bazzurro P (2017) Site dependence and record selection schemes for building fragility and regional loss assessment. Earthq Eng Struct Dyn 46(10):1625–1643. https://doi.org/10.1002/eqe.2873

    Article  Google Scholar 

  • Lin T, Harmsen SC, Baker JW, Luco N (2013) Conditional spectrum computation incorporating multiple causal earthquakes and ground-motion prediction models. Bull Seismol Soc Am 103(2A):1103–1116. https://doi.org/10.1785/0120110293

    Article  Google Scholar 

  • Luco N, Cornell CA (2007) Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthq Spectra 23(2):357–392. https://doi.org/10.1193/1.2723158

    Article  Google Scholar 

  • Martins L, Silva V (2020) Development of a fragility and vulnerability model for global seismic risk analyses. Bull Earthq Eng. https://doi.org/10.1007/s10518-020-00885-1

    Article  Google Scholar 

  • NIED (2019) K-NET and KiK-net networks. National Research Institute for Earth Science and Disaster Resilience. https://doi.org/10.17598/NIED.0004

  • Osorio F (2015) Modelo de exposición sísmica de viviendas del departamento de Antioquia, Colombia. Dissertation. Eafit University (in Spanish)

  • Pagani M, Monelli D, Weatherill G, Danciu L, Crowley H, Silva V, Henshaw P, Butler L, Nastasi M, Panzeri L, Simionato M (2014) OpenQuake engine: An open hazard (and risk) software for the global earthquake model. Seismol Res Lett 85(3):692–702. https://doi.org/10.1785/0220130087

    Article  Google Scholar 

  • Paris G, Machete M, Dart R, Haller K (2000) Map and database of quaternary faults and folds in Colombia and offshore regions, USGS open-file report

  • Pitilakis K (2015) Earthquake risk assessment: certitudes, fallacies, uncertainties and the quest for soundness. In: Ansal A (eds) perspectives on european earthquake engineering and seismology. Geotechnical, geological and earthquake engineering, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-16964-4_3

  • Pulido N (2003) Seismotectonics of the Northern Andes (Colombia) and the development of seismic networks. Bull Int Inst Seismol Earthq Eng (special edition):69–76

  • Riga E, Karatzetzou A, Mara A, Pitilakis K (2017) Studying the uncertainties in the seismic risk assessment at urban scale applying the capacity spectrum method: the case of Thessaloniki. Soil Dyn Earthq Eng 92:9–24. https://doi.org/10.1016/j.soildyn.2016.09.043

    Article  Google Scholar 

  • Rivera, MMA, García J, Montejo JS, Eraso JF, Valcárcel JA, Mora MG, Viganò D, Pagani M, and Díaz FJ (2020). Modelo nacional de amenaza sísmica para Colombia. Servicio Geológico Colombiano. (in Spanish) https://libros.sgc.gov.co/index.php/editorial/catalog/book/38

  • Salgado-Gálvez MA, Zuloaga-Romero D, Bernal GA, Mora MG, Cardona OD (2014) Fully probabilistic seismic risk assessment considering local site effects for the portfolio of buildings in Medellín. Colombia Bull Earthq Eng 12(2):671–695. https://doi.org/10.1007/s10518-013-9550-4

    Article  Google Scholar 

  • SGC (2018) Modelo de Amenaza Sísmica de Colombia. Dirección de Geoamenazas. Servicio Geológico Colombiano. Retrieved from https://amenazasismica.sgc.gov.co/. Accessed 30 Sep 2020. (in Spanish)

  • SGC (2020) Catálogo de Aceleraciones. Dirección de Geoamenazas. Servicio Geológico Colombiano. Retrieved from http://bdrsnc.sgc.gov.co/paginas1/catalogo/index_rnac.php (in Spanish)

  • SIBER-RISK (2019) Simulation based earthquake risk and resilience of interdependent systems and networks strong motion database. Retrieved from https://doi.org/10.7764/datasetUC/ING-UC.1170836_1. Accessed 30 September 2020. (in Spanish)

  • Silva V (2018) Critical issues on probabilistic earthquake loss assessment. J Earthq Eng 22(9):1683–1709. https://doi.org/10.1080/13632469.2017.1297264

    Article  Google Scholar 

  • Silva V (2019) Uncertainty and correlation in seismic vulnerability functions of building classes. Earthq Spectra 35(4):1515–1539. https://doi.org/10.1193/013018EQS031M

    Article  Google Scholar 

  • Silva V, Crowley H, Pagani M, Monelli D, Pinho R (2014) Development of the OpenQuake engine, the Global Earthquake Model’s open-source software for seismic risk assessment. Nat Hazards 72(3):1409–1427. https://doi.org/10.1007/s11069-013-0618-x

    Article  Google Scholar 

  • Silva V, Casotto C, Rao A, Villar M, Crowley H, Vamvatsikos D (2015) OpenQuake Risk Modeller’s toolkit-user guide, Technical Report 2015–09, Global Earthquake Model Foundation, Pavia, Italy

  • Silva V, Akkar S, Baker J, Bazzurro P, Castro JM, Crowley H, Dolsek M, Galasso C, Lagomarsino S, Monteiro R, Perrone D (2019) Current challenges and future trends in analytical fragility and vulnerability modeling. Earthq Spectra 35(4):1927–1952. https://doi.org/10.1193/042418EQS101O

    Article  Google Scholar 

  • Silva V, Amo-Oduro D, Calderon A, Costa C, Dabbeek J, Despotaki V, Martins L, Pagani M, Rao A, Simionato M, Viganò D (2020) Development of a global seismic risk model. Earthq Spectra. https://doi.org/10.1177/8755293019899953

    Article  Google Scholar 

  • Sinisterra H (2017) Determinación del desempeño sísmico para edificios en pórticos de concreto reforzado diseñados bajo la norma de diseño sismo resistente C.C.C.S.R-84. Dissertation. Pontificia Universidad Javeriana, Cali. (in Spanish)

  • Sousa L, Marques M, Silva V, Varum H (2017) Hazard disaggregation and record selection for fragility analysis and earthquake loss estimation. Earthq Spectra 33(2):529–549. https://doi.org/10.1193/062016EQS101M

    Article  Google Scholar 

  • Sousa L, Silva V, Marques M, Crowley H (2018) On the treatment of uncertainty in seismic vulnerability and portfolio risk assessment. Earthq Eng Struct Dyn 47(1):87–104. https://doi.org/10.1002/eqe.2940

    Article  Google Scholar 

  • Spinel JS, Reyes JC, Rincón R, Yamin L (2019) Estimación de parámetros de demanda sísmica en viviendas existentes de mampostería simple. Paper presented at the 9th National Congress on Seismic Engineering, Universidad del Valle, Cali, 28–31 May 2019. (in Spanish)

  • SSN-UNAM (2020) Universidad Nacional Autónoma de México, I. d. G., Servicio Sismológico Nacional. Catálogo de sismos. Retrieved from https://doi.org/10.21766/SSNMX/EC/MX

  • Taboada A, Rivera A, Fuenzalida A, Cisternas A, Philip H, Bijwaard H, Olaya J (2000) Geodynamics of the northern Andes. Subductions and intracontinental deformation (Colombia). Tecton 19(5):787–813. https://doi.org/10.1029/2000TC900004

    Article  Google Scholar 

  • Villar-Vega M, Silva V, Crowley H, Yepes C, Tarque N, Acevedo AB, Hube MA, Gustavo CD, María HS (2017) Development of a fragility model for the residential building stock in South America. Earthq Spectra 33(2):581–604. https://doi.org/10.1193/010716EQS005M

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for the insightfull comments that improved significantly the outcome of this article.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to M. C. Hoyos.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyos, M.C., Hernández, A.F. Impact of vulnerability assumptions and input parameters in urban seismic risk assessment. Bull Earthquake Eng 19, 4407–4434 (2021). https://doi.org/10.1007/s10518-021-01140-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-021-01140-x

Keywords

Navigation