Skip to main content
Log in

Resistance of the flow over rough surfaces

  • Articles
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

The mechanism of the flow resistance in open channels and pipelines is of vital importance for various critical issues related to the water flow. The Nikurade’s method of calculating the friction factor is not applicable in some cases. It is necessary to consider the influence of the vortex volume surrounding the vegetation and to study the hydrodynamic characteristics of the vegetated channels. This paper analyzes the variation of the vortices created by the surface roughness of different types and different sizes and proposes new definitions of the hydraulic radius and the equivalent roughness height. With consideration of the skin friction and the form drag, on the basis of the force balance equation, a novel calculation method is used for the friction factor, and this method is verified by experimental data. The hydrodynamic mechanism of the flow resistance revealed in this study may serve as a theoretical basis for hydraulic engineers to calculate the friction factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Gamrat G., Favre M. R., Person L. S. et al. An experimental study and modelling of roughness effects on laminar flow in microchannels [J]. Journal of Fluid Mechanics, 2008, 594: 399–423.

    Article  Google Scholar 

  2. Dai W. H., Ding W. Hydrodynamic improvement of a goose-head pattern braided reach in lower Yangtze River [J]. Journal of Hydrodynamics, 2019, 31(3): 614–621.

    Article  Google Scholar 

  3. Stone B. M. Hydraulic resistance of flow in channels with cylindrical roughness [J]. Journal of Hydraulic Engineering ASCE, 2002, 128(5): 500–506.

    Article  Google Scholar 

  4. Wu L. H., Yang X. L. Factors influencing bending rigidity of submerged vegetation [J]. Journal of Hydrodynamics, 2011, 23(6): 723–729.

    Article  Google Scholar 

  5. Huai W. X., Zhang J., Wang W. J. et al. Turbulence structure in open channel flow with partially covered artificial emergent vegetation [J]. Journal of Hydrology, 2019, 573: 180–193.

    Article  Google Scholar 

  6. Perry A. E., Schofield W. H., Joubert P. N. Rough wall turbulent boundary layers [J]. Journal of Fluid Mechanics, 1969, 37: 383–413.

    Article  Google Scholar 

  7. Nikuradse J. Stromungsgesetze in glatten und rauhen rohren [M]. Berlin, Germany: VDI-Forsch, 1993.

    MATH  Google Scholar 

  8. Amiri M. M., Vitola M. A., Sphaier S. H. et al. RANS feasibility study of using roughness to mimic transition strip effect on the crossflow separation over a 6:1 prolate-spheroid [J]. Journal of Hydrodynamics, 2019, 31(3): 570–581.

    Article  Google Scholar 

  9. Jimenez J. Turbulent flows over rough walls [J]. Annual Review of Fluid Mechanics, 2004, 36: 173–196.

    Article  MathSciNet  Google Scholar 

  10. Chang K., Constantinescu G., Park S. 2-D eddy resolving simulations of flow past a circular array of cylindrical plant stems [J]. Journal of Hydrodynamics, 2018, 30(2): 317–335.

    Article  Google Scholar 

  11. Huai W., Wang W., Hu Y. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation [J]. Advances in Water Resources, 2014, 69: 106–113.

    Article  Google Scholar 

  12. Huai W., Yang L., Wang W. J. Predicting the vertical low suspended sediment concentration in vegetated flow using a random displacement model [J]. Journal of Hydrology, 2019, 578: 124101.

    Article  Google Scholar 

  13. Wen J., Hu H. B., Luo Z. Z. et al. Experimental investigation of flow past a circular cylinder with hydrophobic coating [J]. Journal of Hydrodynamics, 2018, 30(6): 992–1000.

    Article  Google Scholar 

  14. Ligrani P. M., Moffat R. J. Structure of transitionally rough and fully rough turbulent boundary layers [J]. Journal of Fluid Mechanics, 1986, 162: 69–98.

    Article  MathSciNet  Google Scholar 

  15. Volino R. J., Schultz M. P., Flack K. A. Turbulence structure in a boundary layer with two-dimensional roughness [J]. Journal of Fluid Mechanics, 2009, 635: 75–101.

    Article  Google Scholar 

  16. Roussinova V., Balachandar R. Open channel flow past a train of rib roughness [J]. Journal of Turbulence, 2011, 12: N28.

    Article  Google Scholar 

  17. Yang S. Q., Han Y., Dharmasiri N. Flow resistance over fixed roughness elements [J]. Journal of Hydraulic Research, 2011, 49(2): 257–262.

    Article  Google Scholar 

  18. Golly A., Turowski J. M., Badoux A. et al. Testing models of step formation against observations of channel steps in a steep mountain stream [J]. Earth Surface Processes and Landforms, 2019, 44(1): 1390–1406.

    Article  Google Scholar 

  19. Di Stefano C., Nicosia A., Pampalone V. et al. Rill flow resistance law under equilibrium bed-load transport conditions [J]. Hydrological Processes, 2019, 33(9): 1317–1323.

    Article  Google Scholar 

  20. Li T. S., Chen J., Han Y. et al. Study on the characteristic point location of depth average velocity in smooth open channels: Applied to channels with flat or concave boundaries [J]. Water, 2020, 12(2): 430.

    Article  Google Scholar 

  21. Yang S. Q., Han Y., Dharmasiri N. Momentum balance method (MBM) and estimation of boundary shear stress distribution [J]. Journal of Hydraulic Engineering, ASCE, 2012, 138(7): 657–660.

    Article  Google Scholar 

  22. Yang S. Q., Lim S. Y. Boundary shear stress distributions in trapezoidal channels [J]. Journal of Hydraulic Research, 2005, 43(1): 98–102.

    Article  Google Scholar 

  23. Yang S. Q., Tan S. K., Lim S. Y. et al. Velocity distribution in combined wave-current flows [J]. Advances in Water Resources, 2006, 29(8): 1196–1208.

    Article  Google Scholar 

  24. Yang S. Q., Dou G. R. Turbulent drag reduction with polymer additive in rough pipes [J]. Journal of Fluid Mechanics, 2010, 642: 279–294.

    Article  Google Scholar 

  25. Takase K. Experimental results of heat transfer coefficients and friction factors in a 2D/3D rib-roughened annulus [J]. Experimental Thermal and Fluid Science, 1996, 13(2): 142–151.

    Article  Google Scholar 

  26. Liu Y., Li J., Smits A. J. Roughness effects in laminar channel flow [J]. Journal of Fluid Mechanics, 2019, 876: 1129–1145.

    Article  Google Scholar 

  27. Wagner R. N., Kandlikar S. G. Effects of structured roughness on fluid flow at the microscale level [J]. Heat Transfer Engineering, 2012, 33(6): 483–493.

    Article  Google Scholar 

  28. Schlichting H. Experimental investigation of the problem of surface roughness [J]. Ingenieur-Archiv, 1936, 7(11): 747–748.

    Google Scholar 

  29. Knight D. W., Macdonald J. A. Hydraulic resistance of artificial strip roughness [J]. Journal of the Hydraulics Division, 1979, 105(6): 675–690.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Jilin Province Key Research and Development Plan Project (Grant No. 20180201036SF), the Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University (Grant No. 19R06), the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University (Grant No. ICT20021) and the Chinese Universities Scientific Fund (Grant Nos. 2020TC033, 10710301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Additional information

Projects supported by the National Natural Science Foundation of China (Grant No. 51979275).

Biography: Yu Han (1985-), Female, Ph. D., Associate Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Wang, Sy., Chen, J. et al. Resistance of the flow over rough surfaces. J Hydrodyn 33, 593–601 (2021). https://doi.org/10.1007/s42241-021-0039-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0039-3

Key words

Navigation