Skip to main content
Log in

Pseudo-multipliers and Smooth Molecules on Hermite Besov and Hermite Triebel–Lizorkin Spaces

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We obtain new molecular decompositions and molecular synthesis estimates for Hermite Besov and Hermite Triebel–Lizorkin spaces and use such tools to prove boundedness properties of Hermite pseudo-multipliers on those spaces. The notion of molecule we develop leads to boundedness of pseudo-multipliers associated to symbols of Hörmander-type adapted to the Hermite setting on spaces for which the smoothness allowed includes non-positive values; in particular, we obtain continuity results for such operators on Lebesgue and Hermite local Hardy spaces. As a byproduct of our results on boundedness properties of pseudo-multipliers, we show that Hermite Besov spaces and Hermite Triebel–Lizorkin spaces are closed under non-linearities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagchi, S., Thangavelu, S.: On Hermite pseudo-multipliers. J. Funct. Anal. 268(1), 140–170 (2015)

    Article  MathSciNet  Google Scholar 

  2. Bényi, Á., Bernicot, F., Maldonado, D., Naibo, V., Torres, R.H.: On the Hörmander classes of bilinear pseudodifferential operators II. Indiana Univ. Math. J. 62(6), 1733–1764 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bony, J.M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14(2), 209–246 (1981)

    Article  MathSciNet  Google Scholar 

  4. Bourdaud, G.: Une algèbre maximale d’opérateurs pseudo-différentiels. Commun. Partial Differ. Equ. 13(9), 1059–1083 (1988)

    Article  Google Scholar 

  5. Bui, H.-Q., Bui, T.A., Duong, X.T.: Weighted Besov and Triebel–Lizorkin spaces associated with operators and applications. Forum Math. Sigma, 8:Paper No. e11, 95 (2020)

  6. Bui, T.A.: Hermite pseudo-multipliers on new Besov and Triebel–Lizorkin spaces. J. Approximat. Theory 252, (2020)

  7. Bui, T.A., Duong, X.T.: Besov and Triebel–Lizorkin spaces associated to Hermite operators. J. Fourier Anal. Appl. 21(2), 405–448 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bui, T.A., Duong, X.T.: Higher-order Riesz transforms of Hermite operators on new Besov and Triebel–Lizorkin spaces. Constr. Approx. 53(1), 85–120 (2021)

    Article  MathSciNet  Google Scholar 

  9. Bui, T.A., Li, J., Ly, F.K.: Weighted embeddings for function spaces associated with Hermite expansions. J. Approx. Theory 264, 105534 (2021)

    Article  MathSciNet  Google Scholar 

  10. Cardona, D., Ruzhansky, M.: Hörmander condition for pseudo-multipliers associated to the harmonic oscillator. arXiv:1810.01260 (2018)

  11. Dziubański, J.: Triebel–izorkin spaces associated with Laguerre and Hermite expansions. Proc. Am. Math. Soc. 125(12), 3547–3554 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dziubański, J.: Atomic decomposition of \(H^p\) spaces associated with some Schrödinger operators. Indiana Univ. Math. J. 47(1), 75–98 (1998)

    Article  MathSciNet  Google Scholar 

  13. Epperson, J.: Triebel–Lizorkin spaces for Hermite expansions. Studia Math. 114(1), 87–103 (1995)

    Article  MathSciNet  Google Scholar 

  14. Epperson, J.: Hermite multipliers and pseudo-multipliers. Proc. Am. Math. Soc. 124(7), 2061–2068 (1996)

    Article  MathSciNet  Google Scholar 

  15. Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34(4), 777–799 (1985)

    Article  MathSciNet  Google Scholar 

  16. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93(1), 34–170 (1990)

    Article  MathSciNet  Google Scholar 

  17. Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Homogeneous Besov and Triebel–Lizorkin spaces associated to non-negative self-adjoint operators. J. Math. Anal. Appl. 449(2), 1382–1412 (2017)

    Article  MathSciNet  Google Scholar 

  18. Georgiadis, A.G., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Atomic and molecular decomposition of homogeneous spaces of distributions associated to non-negative self-adjoint operators. J. Fourier. Anal. Appl. 25(6), 3259–3309 (2019)

    Article  MathSciNet  Google Scholar 

  19. Georgiadis, A.G., Nielsen, M.: Pseudodifferential operators on spaces of distributions associated with non-negative self-adjoint operators. J. Fourier Anal. Appl. 23(2), 344–378 (2017)

    Article  MathSciNet  Google Scholar 

  20. Goldberg, D.: A local version of real Hardy spaces. Duke Math. J. 46(1), 27–42 (1979)

    Article  MathSciNet  Google Scholar 

  21. Gong, S., Ma, B., Fu, Z.: A continuous characterization of Triebel–Lizorkin spaces associated with Hermite expansions. J. Funct. Spaces, pages Art. ID 104897, 11 (2015)

  22. Grafakos, L., Torres, R.H.: Pseudodifferential operators with homogeneous symbols. Michigan Math. J. 46(2), 261–269 (1999)

    Article  MathSciNet  Google Scholar 

  23. Hounie, J., Kapp, R.: Pseudodifferential operators on local Hardy spaces. J. Fourier Anal. Appl. 15(2), 153–178 (2009)

    Article  MathSciNet  Google Scholar 

  24. Hwang, I.L.: The \(L^2\)-boundedness of pseudodifferential operators. Trans. Am. Math. Soc. 302(1), 55–76 (1987)

    MATH  Google Scholar 

  25. Kerkyacharian, G., Petrushev, P.: Heat kernel based decomposition of spaces of distributions in the framework of Dirichlet spaces. Trans. Am. Math. Soc. 367(1), 121–189 (2015)

    Article  MathSciNet  Google Scholar 

  26. Mauceri, G.: The Weyl transform and bounded operators on \(L^{p}({ R}^{n})\). J. Funct. Anal. 39(3), 408–429 (1980)

    Article  MathSciNet  Google Scholar 

  27. Meyer, Y.: Remarques sur un théorème de J.-M. Bony. In: Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), number suppl. 1, pp. 1–20 (1981)

  28. Päivärinta, L., Somersalo, E.: A generalization of the Calderón-Vaillancourt theorem to \(L^p\) and \(h^p\). Math. Nachr. 138, 145–156 (1988)

    Article  MathSciNet  Google Scholar 

  29. Park, B.J.: On the boundedness of pseudo-differential operators on Triebel–Lizorkin and Besov spaces. J. Math. Anal. Appl. 461(1), 544–576 (2018)

    Article  MathSciNet  Google Scholar 

  30. Petrushev, P., Xu, Y.: Decomposition of spaces of distributions induced by Hermite expansions. J. Fourier Anal. Appl. 14(3), 372–414 (2008)

    Article  MathSciNet  Google Scholar 

  31. Runst, T.: Pseudodifferential operators of the “exotic” class \(L^0_{1,1}\) in spaces of Besov and Triebel–Lizorkin type. Ann. Global Anal. Geom. 3(1), 13–28 (1985)

    Article  MathSciNet  Google Scholar 

  32. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III (1993)

  33. Thangavelu, S.: Multipliers for Hermite expansions. Rev. Mat. Iberoamericana 3(1), 1–24 (1987)

    Article  MathSciNet  Google Scholar 

  34. Thangavelu, S.: Lectures on Hermite and Laguerre expansions, volume 42 of Mathematical Notes. Princeton University Press, Princeton, NJ, With a preface by Robert S. Strichartz (1993)

  35. Torres, R.H.: Continuity properties of pseudodifferential operators of type \(1,1\). Commun. Partial Differ. Equ. 15(9), 1313–1328 (1990)

    Article  MathSciNet  Google Scholar 

  36. Triebel, H.: Theory of Function Spaces. Modern Birkhäuser Classics. Birkhäuser/Springer Basel AG, Basel, Reprint of 1983 edition, Also published in 1983 by Birkhäuser Verlag (2010)

  37. Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics. Springer, Berlin (2010)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank Lesley Ward and the anonymous referees for their valuable input and suggestions. The first author thanks The Anh Bui for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virginia Naibo.

Additional information

Communicated by Pencho Petrushev.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was partially supported by the NSF under Grant DMS 1500381 and the Simons Foundation under Grant 705953.

Appendices

Appendix A. Estimates for \(\varphi _j(\sqrt{{\mathcal {L}}})\)

In this appendix, we state and prove Lemma A.1, which is used in the proofs of Lemmas 3.3 and 3.4, and Theorem 5.12.

Lemma A.1

Let \(\{\varphi _j\}_{j\in {\mathbb {N}}_0}\) be an admissible system. If \(\eta \ge 1\), \(\varepsilon \ge 4,\) \(\gamma \in {\mathbb {N}}_0^n\) and \(K\ge 0,\) it holds that

$$\begin{aligned}&|\partial _y^\gamma \varphi _j(\sqrt{{\mathcal {L}}}) (x,y)| +|\partial _x^\gamma \varphi _j(\sqrt{{\mathcal {L}}}) (x,y)| \nonumber \\&\quad \lesssim \frac{2^{j(n+|\gamma |)}}{(1+2^j|x-y|)^\eta } \mathrm {e}_{\varepsilon 4^j}(x) e_{\varepsilon 4^j}(y)\quad \forall x,y\in {\mathbb {R}}^n, j\in {\mathbb {N}}_0, \end{aligned}$$
(5.11)

and, for \(|\gamma |\le K,\)

$$\begin{aligned} \Big |\int _{{\mathbb {R}}^n}(x-y)^\gamma \varphi _j(\sqrt{{\mathcal {L}}})(x,y)\,dy\Big | \lesssim 2^{-j|\gamma |}\Big (\frac{1+|x|}{2^j}\Big )^{K-|\gamma |} \mathrm {e}_{\varepsilon 4^j}(x)\quad \forall x\in {\mathbb {R}}^n,j\in {\mathbb {N}}_0. \end{aligned}$$
(5.12)

Remark A.2

Note that by the symmetry of the kernels \(\varphi _j(\sqrt{{\mathcal {L}}})(x,y)\), (5.12) also holds with dx in place of dy on the left hand side, and y in place of x on the right hand side.

Remark A.3

Lemma A.1 holds true, with the same proof, for a family \(\{\varphi _j\}_{j\in {\mathbb {N}}_0}\) where \(\varphi _j(\lambda )=\varphi (2^{-j}\lambda )\) and \(\varphi \) is a smooth function supported in [0, c] for some \(c>0\) that satisfies \(\varphi ^{(k)}(0)=0\) for all \(k\in {\mathbb {N}}.\)

Proof of Lemma A.1

Regarding (5.11), recall that

$$\begin{aligned} \varphi _j(\sqrt{{\mathcal {L}}})(x,y)=\sum _{k\in {\mathbb {N}}_0}\varphi _j(\sqrt{\lambda _k}){\mathbb {P}}_k(x,y). \end{aligned}$$

Then (5.11) can be proved employing the same ideas in the proof of Theorem 4.3 through the use of Lemmas B.1 and B.2 presented in Appendix B.

We turn to the proof of (5.12). Assume \(|\gamma |\le K\) and fix \(x\in {\mathbb {R}}^n\) and \(j\in {\mathbb {N}}_0.\) Set \(B=B(x,\varrho (x))\) where the function \(\varrho (\cdot )\) is defined in (4.2). Let \(\chi \) be a function in \(C^\infty ({\mathbb {R}}^n)\) supported in 2B that satisfies \(\chi =1\) on B\(0\le \chi \le 1\) and

$$\begin{aligned} \Vert \chi ^{(\nu )}\Vert _\infty \le \frac{C}{\varrho (x)^{|\nu |}}\qquad \forall \nu \in {\mathbb {N}}^n_0. \end{aligned}$$

We split the integral into two terms:

$$\begin{aligned} \int _{{\mathbb {R}}^n}(x-y)^\gamma \varphi _j(\sqrt{{\mathcal {L}}})(x,y)\,dy&= \int _{{\mathbb {R}}^n}(1-\chi (y))(x-y)^\gamma \varphi _j(\sqrt{{\mathcal {L}}})(x,y)\,dy \\&\qquad +\int _{{\mathbb {R}}^n} \chi (y)(x-y)^\gamma \varphi _j(\sqrt{{\mathcal {L}}})(x,y)\,dy \\&=:I + II. \end{aligned}$$

To estimate I we use the bounds from (5.11) with \(\eta >n+K\) and recall that \(|\gamma |\le K\) to obtain

$$\begin{aligned} |I|&\lesssim \mathrm {e}_{\varepsilon 4^j(x)} \int _{B^c} \frac{(2^j|x-y|)^{|\gamma |-K}2^{j(n-|\gamma |)}}{(1+2^j|x-y|)^{\eta -K}}\,dy \\&\le \Big (\frac{1+|x|}{2^j}\Big )^{K-|\gamma |}2^{-j|\gamma |}\mathrm {e}_{\varepsilon 4^j(x)} \int _{{\mathbb {R}}^n}\frac{2^{jn}}{(1+2^j|x-y|)^{\eta -K}}\,dy \\&\lesssim \Big (\frac{1+|x|}{2^j}\Big )^{K-|\gamma |}2^{-j|\gamma |}\mathrm {e}_{\varepsilon 4^j(x)}. \end{aligned}$$

For the second term we have, by employing the Cauchy-Schwarz inequality,

$$\begin{aligned} |II|&=\Big | \sum _{k\in {\mathbb {N}}_0}\varphi _j(\sqrt{\lambda _k}) \sum _{|\xi |=k}h_\xi (x)\int _{{\mathbb {R}}^n}\chi (y) (y-x)^\gamma h_\xi (y)\,dy\Big |\\&\le \Vert \varphi \Vert _\infty \Big (\sum _{k\in I_j} \sum _{|\xi |=k} h_\xi (x)^2\Big )^{1/2}\Big (\sum _{k\in I_j}\sum _{|\xi |=k} \Big | \int _{{\mathbb {R}}^n} (y-x)^\gamma \chi (y) h_\xi (y)\,dy\Big |^2\Big )^{1/2}, \end{aligned}$$

where we recall that \(k\in I_j\) means \(\frac{1}{2}4^{j-2}-\lfloor n/2 \rfloor \le k\le \frac{1}{2}4^j -\lceil n/2\rceil \).

To estimate the second factor we note that for any \(N \in {\mathbb {N}}_0,\) it holds that

$$\begin{aligned} \Big | \int _{{\mathbb {R}}^n} (y-x)^\gamma \chi (y) h_\xi (y)\,dy\Big |&=\lambda ^{-N}_{|\xi |} \Big |\int _{{\mathbb {R}}^n} {\mathcal {L}}_y^N\big [ (y-x)^\gamma \chi (y)\big ] h_\xi (y)\,dy\Big | \\&\le \lambda ^{-N}_{|\xi |} \Big \Vert {\mathcal {L}}^N \big [(\cdot -x)^\gamma \chi (\cdot )\big ] \Big \Vert _{L^2(2B)} \Vert h_\xi \Vert _{L^2(2B)} \\&\sim (1+|\xi |)^{-N} \Big \Vert {\mathcal {L}}^N \big [(\cdot -x)^\gamma \chi (\cdot )\big ] \Big \Vert _{L^2(2B)} \Vert h_\xi \Vert _{L^2(2B)}. \end{aligned}$$

Repeated application of the Leibniz’ rule gives, with the sum running over indices such that \(|a|+|b|\le 2N,\) \(\beta +\nu =b\) and \(|\beta | \le |\gamma |,\)

$$\begin{aligned} {\mathcal {L}}^N \big [(\cdot -x)^\gamma \chi (\cdot )\big ](y) = \sum _{a,b,\beta ,\nu ,\gamma } C_{a,b,\beta ,\nu } \,y^a (y-x)^{\gamma -\beta }\chi ^{(\nu )}(y) \end{aligned}$$

so that

$$\begin{aligned} \Big \Vert {\mathcal {L}}^N \big [(\cdot -x)^\gamma \chi (\cdot )\big ] \Big \Vert _{L^2(2B)}&\sim \sum _{a,b,\beta ,\nu ,\gamma } \Big (\int _{2B} \big | |y|^{|a|} |y-x|^{|\gamma |-|\beta |}|\chi ^{(\nu )}(y)| \big |^2\,dy\Big )^{1/2} \\&\lesssim \sum _{a,b,\beta ,\nu ,\gamma } \varrho (x)^{|\gamma |-|\beta |-|\nu | +n/2} \sup _{y\in 2B}|y|^{|a|} \\&\lesssim \sum _{\begin{array}{c} |a|+|b|\le 2N \end{array}} (1+|x|)^{|a|+|b|-|\gamma | -n/2} \\&\lesssim (1+|x|)^{2N-|\gamma |-n/2}. \end{aligned}$$

Inserting this into the estimate for II leads to

$$\begin{aligned} |II|&\lesssim \Big (\sum _{k\in I_j} \sum _{|\xi |=k} h_\xi (x)^2\Big )^{1/2}\Big (\sum _{k\in I_j}\sum _{|\xi |=k} \bigg |\frac{(1+|x|)^{2N-|\gamma |-n/2}}{(1+|\xi |)^N}\bigg |^2 \Vert h_\xi \Vert _{L^2(2B)}^2\Big )^{1/2} \\&\lesssim \Big (\frac{1+|x|}{2^j}\Big )^{2N-|\gamma |-n/2}2^{-j(|\gamma |+n/2)}\Big (\sum _{k\in I_j} \sum _{|\xi |=k} h_\xi (x)^2\Big )^{1/2}\Big (\sum _{k\in I_j}\sum _{|\xi |=k} \Vert h_\xi \Vert _{L^2(2B)}^2\Big )^{1/2}\\&\lesssim \Big (\frac{1+|x|}{2^j}\Big )^{2N-|\gamma |-n/2}2^{-j(|\gamma |+n/2)} \Big ({\mathbb {Q}}_{4^j}(x,x)\Big )^{1/2} \Big (\int _{2B} {\mathbb {Q}}_{4^j}(y,y) \,dy\Big )^{1/2}. \end{aligned}$$

where in the last line we used that \(\sum _{k\le 4^j}\sum _{|\xi |=k} h_\xi (y)^2= {\mathbb {Q}}_{4^j}(y,y).\) We next apply the bounds (2.3) to get

$$\begin{aligned} |II|&\lesssim \Big (\frac{1+|x|}{2^j}\Big )^{2N-|\gamma |-n/2}2^{-j(|\gamma |+n/2)} \big (2^{jn}\mathrm {e}_{\varepsilon 4^j}(x)^2\big )^{1/2} 2^{jn/2}|2B|^{1/2} \\&\sim \Big (\frac{1+|x|}{2^j}\Big )^{2N-|\gamma |-n}2^{-j|\gamma |}\mathrm {e}_{\varepsilon 4^j}(x)\\&\le \Big (\frac{1+|x|}{2^j}\Big )^{K-|\gamma |}2^{-j|\gamma |}\mathrm {e}_{\varepsilon 4^j}(x) \end{aligned}$$

by choosing N appropriately depending on whether \(\frac{1+|x|}{2^j}\) is larger or smaller than 1. \(\square \)

Appendix B. Useful Identities and Estimates

In this appendix, we present identities and estimates used in the proof of Theorem 4.3.

Lemma B.1

  1. (a)

    Suppose that

    $$\begin{aligned} {\mathbb {F}}(x,y) = \sum _{k\in {\mathbb {N}}_0} f(x,y,k) \,{\mathbb {P}}_k(x,y). \end{aligned}$$

    If \(N\in {\mathbb {Z}}_+,\) it holds that

    $$\begin{aligned} 2^N(x_i- y_i)^N {\mathbb {F}}(x,y) = \sum _{\frac{N}{2}\le \ell \le N}c_{\ell , N}\sum _{k\in {\mathbb {N}}_0} \triangle _k^\ell f(x,y,k)\big (A^{(y)}_i-A^{(x)}_i\big )^{2\ell -N}{\mathbb {P}}_k(x,y), \end{aligned}$$
    (5.13)

    where \(c_{\ell ,N} = (-4)^{N-\ell }(2N-2\ell -1)!!\left( {\begin{array}{c}N\\ 2\ell -N\end{array}}\right) \).

  2. (b)

    If \(N, M\in {\mathbb {Z}}_+,\) it holds that

    $$\begin{aligned} x_i^M \big (A^{(x)}_i-A^{(y)}_i\big )^N&= \sum _{k=0}^M\genfrac(){0.0pt}1{M}{k} \tfrac{N!}{(N-k)!}\big (A^{(x)}_i-A^{(y)}_i\big )^{N-k}x_i^{M-k} \end{aligned}$$
    (5.14)

    and

    $$\begin{aligned} (x_i-y_i)^N\big (A^{(x)}_i\big )^M&=\sum _{k=0}^M\genfrac(){0.0pt}1{M}{k} \tfrac{N!}{(N-k)!}\big (A^{(x)}_i\big )^{M-k}(x_i-y_i)^{N-k}, \end{aligned}$$
    (5.15)

    where \(\frac{N!}{(N-k)!}\) is defined to be 0 whenever \(N<k\).

  3. (c)

    If \(\beta \in {\mathbb {N}}_0^n\) and \(k\in {\mathbb {N}}_0\), it holds that

    $$\begin{aligned} x^\beta \,{\mathbb {P}}_k(x,y)= \sum _{\omega \le \beta } \sum _{|\xi |=k}b_{\omega ,\beta }(\xi ) h_{\xi +\beta -2\omega }(x) h_\xi (y),\end{aligned}$$
    (5.16)

    where \(b_{\omega ,\beta }(\xi )=\prod _{i=1}^n b_{\omega _i,\beta _i}(\xi _i)\) with \( b_{\omega _i,\beta _i}(\xi _i)=0\) if \(\xi _i+\beta _i-2\omega _i<0\) and \( b_{\omega _i,\beta _i}(\xi _i)\sim \xi _i^{\beta _i/2}\) otherwise.

  4. (d)

    If \(\xi ,\alpha \in {\mathbb {N}}_0^n,\) \(m\in {\mathbb {N}}_0\) and \(i\in \{1,\dots , n\},\) it holds that

    $$\begin{aligned} \big |\big (A^{(x)}_i\big )^m h_\xi (x)\big |&\le \big [2(\xi _i+m)+2\big ]^{\frac{m}{2}} | h_{\xi +m e_i}(x)| \end{aligned}$$
    (5.17)

    and

    $$\begin{aligned} \big |\big (A^{(x)}\big )^\alpha h_\xi (x)\big |&\le \big [2(|\xi |+|\alpha |)+2\big ]^{\frac{|\alpha |}{2}} | h_{\xi +\alpha }(x)|. \end{aligned}$$
    (5.18)

Proof of Lemma B.1

The identity in part (a) can be found in [30, Lemma 8] and [34, p.72] with k as a function of \(k\) only. However, it can be checked that the proof also works when k depends on both x and y. Part (b) is from [30, Lemma 9]. Part (c) is [30, equation (6.14)] with \(\mu =0\). In part (d), estimate (5.17) follows from [30, equation (6.5)]:

$$\begin{aligned} \big (A^{(x)}_i\big )^m h_\xi (x) = \prod _{r=0}^{m-1}\sqrt{2(\xi _i+r)+2}\,\, h_{\xi +me_i}(x). \end{aligned}$$

The inequality (5.18) follows from applying (5.17) repeatedly. \(\square \)

Lemma B.2

  1. (a)

    If \(\ell \in {\mathbb {N}}_0,\) it holds that

    $$\begin{aligned} \triangle _k^\ell \big (f(k)\,g(k)\big ) = \sum _{r=0}^\ell \left( {\begin{array}{c}\ell \\ r\end{array}}\right) \triangle _k^r f(k)\,\triangle _k^{\ell -r}g(k+r). \end{aligned}$$
    (5.19)
  2. (b)

    If \(\alpha \in {\mathbb {N}}_0^n\), it holds that

    $$\begin{aligned} A^\alpha (fg) =\sum _{\nu \le \alpha } \left( {\begin{array}{c}\alpha \\ \nu \end{array}}\right) (-1)^\nu \partial ^\nu f \, A^{\alpha -\nu } g. \end{aligned}$$
    (5.20)

Proof of Lemma B.2

Part (a) is well known. For part (b), first note that the following representation for Hermite derivatives holds:

$$\begin{aligned} A_i^m = (-1)^me^{x_i^2/2} \partial _i^m e^{-x_i^2/2}\qquad \forall m\in {\mathbb {N}}_0. \end{aligned}$$
(5.21)

This identity can be obtained by direct calculation for \(m=1\) and by induction for all m. We next show that (5.21) gives

$$\begin{aligned} A_i^{\alpha _i} (fg) = \sum _{\nu _i=0}^{\alpha _i} \left( {\begin{array}{c}\alpha _i\\ \nu _i\end{array}}\right) (-1)^{\nu _i} \partial _i^{\nu _i} f \, A_i^{\alpha _i-\nu _i} g. \end{aligned}$$
(5.22)

Indeed, by (5.21) and the Leibniz rule for differentiation we obtain

$$\begin{aligned} A_i^{\alpha _i} (fg)&= (-1)^{\alpha _i}e^{x_i^2/2} \partial _i^{\alpha _i} \big ( e^{-x_i^2/2}fg\big ) \\&= (-1)^{\alpha _i}e^{x_i^2/2} \sum _{\nu _i=0}^{\alpha _i} \left( {\begin{array}{c}\alpha _i\\ \nu _i\end{array}}\right) \partial _i^{\nu _i} f \, \cdot \partial _i^{\alpha _i-\nu _i}\big (e^{-x_i^2/2} g\big )\\&=\sum _{\nu _i=0}^{\alpha _i} \left( {\begin{array}{c}\alpha _i\\ \nu _i\end{array}}\right) (-1)^{\nu _i}\partial _i^{\nu _i} f \, \cdot (-1)^{\alpha _i-\nu _i}e^{x_i^2/2}\partial _i^{\alpha _i-\nu _i}\big (e^{-x_i^2/2} g\big ). \end{aligned}$$

Equality (5.22) follows by applying (5.21) again. The identity (5.20) then follows by applying (5.22) to each component \(1\le i\le n\). \(\square \)

Appendix C. Remarks About Hermite Besov and Triebel–Lizorkin Spaces

In this appendix, we present some embeddings of Hermite Besov and Hermite Triebel–Lizorkin spaces. The embeddings stated in Corollary C.2, a consequence of Theorem C.1, are used in the proof of Corollary 5.13. In addition, we comment on the Fatou property of Hermite Besov and Hermite Triebel–Lizorkin spaces, which is also used in the proof of Corollary 5.13.

Theorem C.1

  1. (a)

    If \(\alpha \in {\mathbb {R}}, \varepsilon >0,\) \(0<q\le \infty ,\) \(0<q_1\le \infty ,\) and \(0<p\le \infty \) for Besov spaces or \(0<p<\infty \) for Triebel–Lizorkin spaces, it holds that

    $$\begin{aligned} A^{p,q}_{\alpha +\varepsilon }({\mathcal {L}})\hookrightarrow A^{p,q_1}_{\alpha }({\mathcal {L}}). \end{aligned}$$
  2. (b)

    If \(0<q\le \infty ,\) \(0<p<\infty \) and \(\alpha \in {\mathbb {R}},\) it holds that

    $$\begin{aligned} B^{p,\min (p,q)}_\alpha ({\mathcal {L}})\hookrightarrow F^{p,q}_\alpha ({\mathcal {L}})\hookrightarrow B^{p,\max (p,q)}_\alpha ({\mathcal {L}}). \end{aligned}$$
  3. (c)

    If \(0<q\le \infty ,\) \(0<p<p_1<\infty \) and \(\alpha ,\alpha _1\in {\mathbb {R}}\) are such that \(\alpha _1<\alpha ,\) it holds that

    $$\begin{aligned} A^{p,q}_{\alpha }({\mathcal {L}})\hookrightarrow A^{p_1,q}_{\alpha _1}({\mathcal {L}})\quad \text {if}\quad \alpha -\frac{n}{p}=\alpha _1-\frac{n}{p_1}. \end{aligned}$$

The proofs of the embeddings stated in Theorem C.1 are the same as those in the Euclidean setting; see [36, p.47, Proposition 2] for (a) and (b) and [30, Propositions 6 and 7] for (c).

Corollary C.2

Let \(0<q\le \infty .\) If \(1<p<\infty \) and \( \varepsilon >0,\) then \(A^{p,q}_\varepsilon ({\mathcal {L}})\hookrightarrow L^p({\mathbb {R}}^n);\) if \(0<p\le 1\) and \(\varepsilon >n(\frac{1}{p}-1),\) there exists \(p_1> 1\) such that \(A^{p,q}_\varepsilon ({\mathcal {L}})\hookrightarrow L^{p_1}({\mathbb {R}}^n).\)

Proof

Let \(0<q\le \infty .\)

Case \(1<p<\infty \) and \(\varepsilon >0:\) Taking \(\alpha =0\) in part (a) of Theorem C.1 we obtain that \(F^{p,q}_{\varepsilon }({\mathcal {L}})\hookrightarrow F^{p,2}_{0}({\mathcal {L}})=L^p({\mathbb {R}}^n).\) Using parts (a) and (b) of Theorem C.1 we have \(B^{p,q}_{\alpha +\varepsilon }({\mathcal {L}})\hookrightarrow B^{p,\min (p,2)}_{\alpha }({\mathcal {L}})\hookrightarrow F^{p,2}_\alpha ({\mathcal {L}});\) then \(\alpha =0\) implies \(B^{p,q}_{\varepsilon }({\mathcal {L}})\hookrightarrow F^{p,2}_0({\mathcal {L}})=L^p({\mathbb {R}}^n).\)

Case \(0<p\le 1\) and \(\varepsilon >n(\frac{1}{p}-1):\) Let \(p_1> 1\) be such that \(p_1>p\) and \(\varepsilon >n(\frac{1}{p}-\frac{1}{p_1});\) such \(p_1\) exists since \(\varepsilon >n(\frac{1}{p}-1)\ge 0.\) Setting \(\alpha _1=\varepsilon -n(\frac{1}{p}-\frac{1}{p_1}),\) part (c) of Theorem C.1 and the previous case imply that

$$\begin{aligned} A^{p,q}_{\varepsilon }({\mathcal {L}})\hookrightarrow A^{p_1,q}_{\alpha _1}({\mathcal {L}})\hookrightarrow L^{p_1}({\mathbb {R}}^n). \end{aligned}$$

\(\square \)

Next, we comment about the Fatou property for Hermite Besov and Hermite Triebel–Lizorkin spaces.

Let \({\mathcal {A}}\) be a quasi-Banach space such that \({\mathscr {S}}({\mathbb {R}}^n)\hookrightarrow {\mathcal {A}}\hookrightarrow {\mathscr {S}}'({\mathbb {R}}^n).\) The space \({\mathcal {A}}\) is said to have the Fatou property if for every sequence \(\{f_j\}_{j\in {\mathbb {N}}}\subset {\mathcal {A}}\) that converges in \({\mathscr {S}}'({\mathbb {R}}^n),\) as \(j\rightarrow \infty ,\) and that satisfies \(\liminf _{j\rightarrow \infty } \Vert f_j\Vert _{{\mathcal {A}}}<\infty ,\) it follows that \(\lim _{j\rightarrow \infty }f_j\in {\mathcal {A}}\) and \(\Vert \lim _{j\rightarrow \infty }f_j\Vert _{{\mathcal {A}}}\lesssim \liminf _{j\rightarrow \infty } \Vert f_j\Vert _{{\mathcal {A}}},\) where the implicit constant is independent of \(\{f_j\}_{j\in {\mathbb {N}}}.\)

It can be shown, using standard proofs (see for instance [37, p.48, Proposition 2.8]), that \(A^{p,q}_{\alpha }({\mathcal {L}})\) posses the Fatou property for any \(\alpha \in {\mathbb {R}},\) \(0<q\le \infty ,\) \(0<p\le \infty \) for Besov spaces and \(0<p<\infty \) for Triebel–Lizorkin spaces. This is due to the following facts: (1) if \(f,g\in L^p({\mathbb {R}}^n)\) and \(|f|\le |g|\) pointwise a.e., then \(\Vert f\Vert _{L^p}\le \Vert g\Vert _{L^p};\) (2) if \(\{f_j\}_{j\in {\mathbb {N}}}\subset L^p({\mathbb {R}}^n)\) and \(f_j\ge 0\) poinwise a.e., then \(\Vert \liminf _{j\rightarrow \infty } f_j\Vert _{L^p}\le \liminf _{j\rightarrow \infty }\Vert f_j\Vert _{L^p};\) (3) if \(f_j\rightarrow f\) in \({\mathscr {S}}'({\mathbb {R}}^n)\) then, for any \(k\in {\mathbb {N}}_0\) and any admissible pair \((\varphi _0,\varphi _j),\) \(\varphi _k(\sqrt{{\mathcal {L}}})f_j\rightarrow \varphi _k(\sqrt{{\mathcal {L}}})f\) pointwise as \(j\rightarrow \infty .\)

Appendix D. Operator Norm

The following result about the operator norm of pseudo-multipliers is used in the proof of Corollary 5.13.

Lemma D.1

Let \(m\in {\mathbb {R}},\) \(\rho \ge 0,\) \(\delta \ge 0,\) \({\mathcal {N}},{\mathcal {K}}\in {\mathbb {N}}_0,\) \(\alpha , {\tilde{\alpha }}\in {\mathbb {R}},\) \(0<p< \infty ,\) \(0<q< \infty ,\) and \(0<{\tilde{p}}\le \infty \) for Besov spaces or \(0<{\tilde{p}}<\infty \) for Triebel–Lizorkin spaces. If \(T_\sigma \) is bounded from \(A^{p,q}_\alpha ({\mathcal {L}})\) to \(A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}({\mathcal {L}})\) for all \(\sigma \in S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta },\) it holds that

$$\begin{aligned} \Vert T_\sigma \Vert _{A^{p,q}_\alpha \rightarrow A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}}\lesssim \mathop {\max _{0\le |\nu |\le {\mathcal {N}}}}_{0\le \kappa \le {\mathcal {K}}} \mathop {\sup _{x\in {\mathbb {R}}^n}}_{k\in {\mathbb {N}}_0}| \partial ^\nu _x \triangle ^\kappa _k\sigma (x,k)| (1+\sqrt{k})^{-m+2\rho \kappa -\delta |\nu |} \quad \forall \sigma \in S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }. \end{aligned}$$

Proof

We follow ideas from the proof of [2, Lemma 2.6]. Set

$$\begin{aligned} \Vert \sigma \Vert _{S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }}= \mathop {\max _{0\le |\nu |\le {\mathcal {N}}}}_{0\le \kappa \le {\mathcal {K}}} \mathop {\sup _{x\in {\mathbb {R}}^n}}_{k\in {\mathbb {N}}_0}| \partial ^\nu _x \triangle ^\kappa _k\sigma (x,k)| (1+\sqrt{k})^{-m+2\rho \kappa -\delta |\nu |} \quad \forall \sigma \in S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }; \end{aligned}$$

then \(S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }\) is a Banach space with the norm \(\Vert \cdot \Vert _{S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }},\) Define the linear operator

$$\begin{aligned} {\mathcal {U}}: S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }\rightarrow L(A^{p,q}_\alpha ({\mathcal {L}}), A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}({\mathcal {L}})), \quad {\mathcal {U}}(\sigma )=T_\sigma , \end{aligned}$$

where \(L(A^{p,q}_\alpha ({\mathcal {L}}), A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}({\mathcal {L}}))\) is the quasi-Banach space of all linear bounded operators from \(A^{p,q}_\alpha ({\mathcal {L}})\) to \(A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}({\mathcal {L}})\) with the usual operator norm. We will show that the graph of \({\mathcal {U}}\) is closed; as a consequence of the Closed Graph Theorem, it follows that \({\mathcal {U}}\) is continuous and therefore the desired result follows.

Let \(\{(\sigma _j,T_{\sigma _j})\}_{j\in {\mathbb {N}}}\) be a sequence in the graph of \({\mathcal {U}}\) that converges to \((\sigma , T)\in S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }\times L(A^{p,q}_\alpha ({\mathcal {L}}), A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}({\mathcal {L}}))\) in the product topology. We will show that \(T(f)=T_\sigma (f)\) for all \(f\in {\mathscr {S}}({\mathbb {R}}^n);\) assuming the latter, since \({\mathscr {S}}({\mathbb {R}}^n)\) is dense in \(A^{p,q}_\alpha ({\mathcal {L}})\) and \(T_\sigma , T\in L(A^{p,q}_\alpha ({\mathcal {L}}), A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}({\mathcal {L}})),\) it follows that \(T_\sigma =T.\) As a consequence, the graph of \({\mathcal {U}} \) is closed.

Given \(f\in {\mathscr {S}}({\mathbb {R}}^n)\) and N sufficiently large, using the definition of \(\Vert \cdot \Vert _{S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }},\) [30, Lemma 3] and that \(h_\xi \) are bounded uniformly in \(\xi \) by [34, Lemma 1.5.2, p.27], we obtain

$$\begin{aligned} |T_\sigma (f)(x)-T_{\sigma _j}(f)(x)|&=\left| \sum _{k\in {\mathbb {N}}_0} (\sigma (x,\lambda _k)-\sigma _j(x,\lambda _k)){\mathbb {P}}_k(f)(x)\right| \\&\le \Vert \sigma -\sigma _j\Vert _{S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }} \sum _{k\in {\mathbb {N}}_0} (1+\sqrt{\lambda _k})^m \sum _{|\xi |=k} |\langle f,h_\xi \rangle | |h_\xi (x)|\\&\lesssim \Vert \sigma -\sigma _j\Vert _{S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }} \sum _{\xi \in {\mathbb {N}}_0^n} (1+\sqrt{|\xi |})^m \frac{1}{(1+|\xi |)^N}\\&\lesssim \Vert \sigma -\sigma _j\Vert _{S^{m,{\mathcal {K}},{\mathcal {N}}}_{\rho ,\delta }}, \end{aligned}$$

which implies that \(T_{\sigma _j}(f)\) converges to \(T_{\sigma }(f)\) uniformly in \({\mathbb {R}}^n.\) On the other hand, we have

$$\begin{aligned} \Vert T_{\sigma _j}(f)-T(f)\Vert _{A^{{\tilde{p}},{\tilde{q}}}_\alpha }\lesssim \Vert T_{\sigma _j}-T\Vert _{A^{p,q}_\alpha \rightarrow A^{{\tilde{p}},{\tilde{q}}}_{{\tilde{\alpha }}}} \Vert f\Vert _{A^{p,q}_\alpha }\rightarrow 0. \end{aligned}$$

The above implies that \(T_{\sigma _j}(f)\) converges to \(T_{\sigma }(f)\) in \({\mathscr {S}}'({\mathbb {R}}^n)\) and \(T_{\sigma _j}(f)\) converges to T(f) in \({\mathscr {S}}'({\mathbb {R}}^n)\) for all \(f\in {\mathscr {S}}({\mathbb {R}}^n)\) (for the latter see [30, Proposition 4, p. 385 and Section 5, p. 392], which state that \(A^{{\tilde{p}},{\tilde{q}}}_\alpha ({\mathcal {L}})\hookrightarrow {\mathscr {S}}'({\mathbb {R}}^n)\)). Therefore \(T_{\sigma }(f)=T(f)\) for all \(f\in {\mathscr {S}}({\mathbb {R}}^n),\) as desired. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ly, F.K., Naibo, V. Pseudo-multipliers and Smooth Molecules on Hermite Besov and Hermite Triebel–Lizorkin Spaces. J Fourier Anal Appl 27, 57 (2021). https://doi.org/10.1007/s00041-021-09856-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09856-9

Keywords

Mathematics Subject Classification

Navigation