Skip to main content
Log in

An uncertainty view on complementarity and a complementarity view on uncertainty

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Since the uncertainty about an observable of a system prepared in a quantum state is usually described by its variance, when the state is mixed, the variance is a hybrid of quantum and classical uncertainties. Besides that complementarity relations are saturated only for pure, single-quanton, quantum states. For mixed states, the wave–particle quantifiers never saturate the complementarity relation and can even reach zero for a maximally mixed state. So, to fully characterize a quanton it is not sufficient to consider its wave–particle aspect; one has also to regard its correlations with other systems. In this paper, we discuss the relation between quantum correlations and local classical uncertainty measures, as well as the relation between quantum coherence and quantum uncertainty quantifiers. We obtain a complete complementarity relation for quantum uncertainty, classical uncertainty, and predictability. The total quantum uncertainty of a d-paths interferometer is shown to be equivalent to the Wigner–Yanase coherence and the corresponding classical uncertainty is shown to be an entanglement monotone. The duality between complementarity and uncertainty is used to derive quantum correlations measures that complete the complementarity relations for \(l_{1}\)-norm and \(l_{2}\)-norm coherences. Besides, we show that Brukner–Zeilinger’s invariant information quantifies both the wave and particle characters of a quanton and we obtain a sum uncertainty relation for the generalized Gell-Mann’s matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Entanglement monotones are nonnegative functions whose value does not increase under local operations and classical communication (LOCC) [32].

  2. Here, we will not define \(C_\mathrm{re}(\rho ) + S_\mathrm{vn}(\rho )\) as \({\mathcal {V}}(\rho )\) because the first is not a variance.

References

  1. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163 (1929)

    Article  ADS  Google Scholar 

  2. Theurer, T., Killoran, N., Egloff, D., Plenio, M.B.: Resource theory of superposition. Phys. Rev. Lett. 119, 230401 (2017)

    Article  ADS  Google Scholar 

  3. Luo, S.L.: Quantum versus classical uncertainty. Theor. Math. Phys. 143, 681 (2005)

    Article  MATH  Google Scholar 

  4. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Nat. Acad. Sci. U. S. A. 49, 910 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Luo, S.L.: Heisenberg uncertainty relation for mixed states. Phys. Rev. A 72, 042110 (2005)

    Article  ADS  Google Scholar 

  6. Korzekwa, K., Lostaglio, M., Jennings, D., Rudolph, T.: Quantum and classical entropic uncertainty relations. Phys. Rev. A 89, 042122 (2014)

    Article  ADS  Google Scholar 

  7. Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement. Springer, Berlin (1996)

    MATH  Google Scholar 

  8. Bohr, N.: The quantum postulate and the recent development of atomic theory. Nature 121, 580 (1928)

    Article  ADS  MATH  Google Scholar 

  9. According with J.-M. Lévy-Leblond, the term “quanton” was given by M. Bunge. The usefulness of this term is that one can refer to a generic quantum system without using words like particle or wave: J.-M. Lévy-Leblond, On the Nature of Quantons, Science and Education 12, 495 (2003)

  10. Wootters, W.K., Zurek, W.H.: Complementarity in the double-slit experiment: quantum nonseparability and a quantitative statement of Bohr’s principle. Phys. Rev. D 19, 473 (1979)

    Article  ADS  Google Scholar 

  11. Englert, B.-G.: Fringe visibility and which-way information: an inequality. Phys. Rev. Lett. 77, 2154 (1996)

    Article  ADS  Google Scholar 

  12. Englert, B.-G., Bergou, J.A.: Quantitative quantum erasure. Opt. Commun. 179, 337–355 (2000)

    Article  ADS  Google Scholar 

  13. Greenberger, D.M., Yasin, A.: Simultaneous wave and particle knowledge in a neutron interferometer. Phys. Lett. A 128, 391 (1988)

    Article  ADS  Google Scholar 

  14. Dürr, S.: Quantitative wave-particle duality in multibeam interferometers. Phys. Rev. A 64, 042113 (2001)

    Article  ADS  Google Scholar 

  15. Englert, B.-G., Kaszlikowski, D., Kwek, L.C., Chee, W.H.: Wave-particle duality in multi-path interferometers: general concepts and three-path interferometers. Int. J. Quant. Inf. 6, 129 (2008)

    Article  MATH  Google Scholar 

  16. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  17. Bera, M.N., Qureshi, T., Siddiqui, M.A., Pati, A.K.: Duality of quantum coherence and path distinguishability. Phys. Rev. A 92, 012118 (2015)

    Article  ADS  Google Scholar 

  18. Bagan, E., Bergou, J.A., Cottrell, S.S., Hillery, M.: Relations between coherence and path information. Phys. Rev. Lett. 116, 160406 (2016)

    Article  ADS  Google Scholar 

  19. Qureshi, T.: Coherence, interference and visibility. Quanta 8, 24 (2019)

    Article  MathSciNet  Google Scholar 

  20. Mishra, S., Venugopalan, A., Qureshi, T.: Decoherence and visibility enhancement in multi-path interference. Phys. Rev. A 100, 042122 (2019)

    Article  ADS  Google Scholar 

  21. Xu, B.-M., Tu, Z.C., Zou, J.: Duality in quantum work. Phys. Rev. A 101, 022113 (2020)

    Article  ADS  Google Scholar 

  22. Hiesmayr, B.C., Vedral, V.: Thermodynamical Versus Optical Complementarity. arXiv:quant-ph/0501015 (2005)

  23. Angelo, R.M., Ribeiro, A.D.: Wave-particle duality: an information-based approach. Found. Phys. 45, 1407 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Coles, P.J.: Entropic framework for wave-particle duality in multipath interferometers. Phys. Rev. A 93, 062111 (2016)

    Article  ADS  Google Scholar 

  25. Bagan, E., Calsamiglia, J., Bergou, J.A., Hillery, M.: Duality games and operational duality relations. Phys. Rev. Lett. 120, 050402 (2018)

    Article  ADS  MATH  Google Scholar 

  26. Roy, P., Qureshi, T.: Path predictability and quantum coherence in multi-slit interference. Phys. Scr. 94, 095004 (2019)

    Article  ADS  Google Scholar 

  27. Basso, M.L.W., Chrysosthemos, D.S.S., Maziero, J.: Quantitative wave-particle duality relations from the density matrix properties. Quant. Inf. Process. 19, 254 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lü, X.: Quantitative wave-particle duality as quantum state discrimination. Phys. Rev. A 102, 022201 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  29. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  30. Jakob, M., Bergou, J.A.: Quantitative complementarity relations in bipartite systems: entanglement as a physical reality. Opt. Comm. 283, 827 (2010)

    Article  ADS  Google Scholar 

  31. Bruss, D.: Characterizing entanglement. J. Math. Phys. 43, 4237 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Jakob, M., Bergou, J.A.: Complementarity and entanglement in bipartite qudit systems. Phys. Rev. A 76, 052107 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Basso, M.L.W., Maziero, J.: Complete complementarity relations for multipartite pure states. J. Phys. A: Math. Theor. 53, 465301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Qian, X.-F., Vamivakas, A.N., Eberly, J.H.: Entanglement limits duality and vice versa. Optica 5, 942 (2018)

    Article  ADS  Google Scholar 

  36. Yu, C.-S.: Quantum coherence via skew information and its polygamy. Phys. Rev. A 95, 042337 (2017)

    Article  ADS  Google Scholar 

  37. Luo, S., Sun, Y.: Quantum coherence versus quantum uncertainty. Phys. Rev. A 96, 022130 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  38. Messiah, A.: Quantum Mechanics. Dover, New York (2014)

    MATH  Google Scholar 

  39. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  40. Bergou, J.A., Hillery, M.: Introduction to the Theory of Quantum Information Processing. Springer, New York (2013)

    Book  MATH  Google Scholar 

  41. Chen, B., Fei, S.-M.: Total variance and invariant information in complementary measurements. Commun. Theor. Phys. 72, 065106 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Schneider, T., Griffies, S.M.: A conceptual framework for predictability studies. J. Clim. 12, 3133 (1999)

    Article  ADS  Google Scholar 

  43. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  44. Dieguez, P.R., Angelo, R.M.: Information-reality complementarity: the role of measurements and quantum reference frames. Phys. Rev. A 97, 022107 (2018)

    Article  ADS  Google Scholar 

  45. Luo, S.: Quantum uncertainty of mixed states based on skew information. Phys. Rev. A 73, 022324 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. Mintert, F., Viviescas, C., Buchleitner, A.: Basic Concepts of Entangled States in Entanglement and Decoherence: Foundations and Modern Trends. Springer, Berlin (2009)

    MATH  Google Scholar 

  47. Basso, M.L.W., Maziero, J.: Entanglement Monotones from Complementarity Relations. arXiv:2012.14471 [quant-ph] (2020)

  48. Brukner, C., Zeilinger, A.: Operationally invariant information in quantum measurements. Phys. Rev. Lett. 83, 3354 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Napolitano, J., Sakurai, J.J.: Modern Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  50. Maziero, J.: Hilbert–Schmidt quantum coherence in multi-qudit systems. Quant. Inf. Process. 16, 274 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (2013)

    MATH  Google Scholar 

  52. Singh, U., Bera, M.N., Dhar, H.S., Pati, A.K.: Maximally coherent mixed states: complementarity between maximal coherence and mixedness. Phys. Rev. A 91, 052115 (2015)

    Article  ADS  Google Scholar 

  53. Gamel, O., James, D.F.V.: Measures of quantum state purity and classical degree of polarization. Phys. Rev. A 86, 033830 (2012)

    Article  ADS  Google Scholar 

  54. Wu, W., Wang, J.: Wave-particle-entanglement-ignorance complementarity for general bipartite systems. Entropy 22, 813 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  55. Roberts, A.W., Varberg, D.: Convex Functions. Academic Press, New York (1973)

    MATH  Google Scholar 

  56. Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)

    Article  ADS  Google Scholar 

  57. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  MATH  Google Scholar 

  58. Tan, K.C., Kwon, H., Park, C.-Y., Jeong, H.: Unified view of quantum correlations and quantum coherence. Phys. Rev. A 94(02), 2329 (2016)

    Article  Google Scholar 

  59. Bjork, G., Soderholm, J., Trifonov, A., Tsegaye, T., Karlsson, A.: Complementarity and the uncertainty relations. Phys. Rev. A 60, 1874 (1999)

    Article  ADS  Google Scholar 

  60. Liu, H.-Y., Huang, J.-H., Gao, J.-R., Zubairy, M.S., Zhu, S.-Y.: Relation between wave-particle duality and quantum uncertainty. Phys. Rev. A 85, 022106 (2012)

    Article  ADS  Google Scholar 

  61. Bertlmann, R.A., Krammer, P.: Bloch vectors for qudits. J. Phys. A: Math. Theor. 41, 235303 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Englert, B.-G., Scully, M.O., Walther, H.: Complementarity and uncertainty. Nature 375, 367 (1995)

    Article  ADS  Google Scholar 

  63. Storey, E.P., Tan, S.M., Collett, M.J., Walls, D.F.: Complementarity and uncertainty. Nature 375, 368 (1995)

    Article  ADS  Google Scholar 

  64. Dürr, S., Rempe, S.G.: Can wave-particle duality be based on the uncertainty relation? Am. J. Phys. 68, 1021 (2000)

    Article  ADS  Google Scholar 

  65. Qureshi, T., Vathsan, R.: Einstein’s recoiling slit experiment, complementarity and uncertainty. Quanta 2, 58 (2013)

    Article  Google Scholar 

  66. Vathsan, R., Qureshi, T.: Aspects of complementarity and uncertainty. Int. J. Quant. Inform. 14, 1640031 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), process 88882.427924/2019-01, and by the Instituto Nacional de Ciência e Tecnologia de Informação Quântica (INCT-IQ), process 465469/2014-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos L. W. Basso.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basso, M.L.W., Maziero, J. An uncertainty view on complementarity and a complementarity view on uncertainty. Quantum Inf Process 20, 201 (2021). https://doi.org/10.1007/s11128-021-03136-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03136-7

Keywords

Navigation