Skip to main content
Log in

Regularizing Properties of (Non-Gaussian) Transition Semigroups in Hilbert Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let \(\mathcal {X}\) be a separable Hilbert space with norm \(\left \|{\cdot }\right \|\) and let T > 0. Let Q be a linear, self-adjoint, positive, trace class operator on \(\mathcal {X}\), let \(F:\mathcal {X}\rightarrow \mathcal {X}\) be a (smooth enough) function and let W(t) be a \(\mathcal {X}\)-valued cylindrical Wiener process. For α ∈ [0, 1/2] we consider the operator \(A:=-(1/2)Q^{2\alpha -1}:Q^{1-2\alpha }(\mathcal {X})\subseteq \mathcal {X}\rightarrow \mathcal {X}\). We are interested in the mild solution X(t, x) of the semilinear stochastic partial differential equation

$$ \left\{\begin{array}{ll} dX(t,x)=\left( AX(t,x)+F(X(t,x))\right)dt+ Q^{\alpha}dW(t), & t\in(0,T];\\ X(0,x)=x\in \mathcal{X}, \end{array}\right. $$

and in its associated transition semigroup

$$ P(t)\varphi(x):=\mathbb{E}[\varphi(X(t,x))], \qquad \varphi\in B_{b}(\mathcal{X}),\ t\in[0,T],\ x\in \mathcal{X}; $$

where \(B_{b}(\mathcal {X})\) is the space of the bounded and Borel measurable functions. We will show that under suitable hypotheses on Q and F, P(t) enjoys regularizing properties, along a continuously embedded subspace of \(\mathcal {X}\). More precisely there exists K := K(F, T) > 0 such that for every \(\varphi \in B_{b}(\mathcal {X})\), \(x\in \mathcal {X}\), t ∈ (0, T] and \(h\in Q^{\alpha }(\mathcal {X})\) it holds

$$ |P(t)\varphi(x+h)-P(t)\varphi(x)|\leq Kt^{-1/2}\|Q^{-\alpha}h\|. $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Addona, D., Cappa, G., Ferrari, S.: Domains of elliptic operators on sets in Wiener spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 23 (2020)

  2. Angiuli, L., Ferrari, S., Pallara, D.: Gradient estimates for perturbed Ornstein–Uhlenbeck semigroups on infinite-dimensional convex domains. J. Evol. Equ. 19, 677–715 (2019)

    Article  MATH  Google Scholar 

  3. Bignamini, D.A., Ferrari, S.: On semilinear SPDEs with nonlinearities with polynomial growth. Submitted, arXiv:2010.03908 (2020)

  4. Bogachev, V.I.: Gaussian Measures. American Mathematical Society, Providence (1998)

  5. Bonaccorsi, S., Fuhrman, M.: Regularity results for infinite dimensional diffusions. A Malliavin calculus approach. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 10, 35–45 (1999)

    MATH  Google Scholar 

  6. Cappa, G., Ferrari, S.: Maximal Sobolev regularity for solutions of elliptic equations in infinite dimensional Banach spaces endowed with a weighted Gaussian measure. J. Differ. Equ. 261, 7099–7131 (2016)

    Article  MATH  Google Scholar 

  7. Cappa, G., Ferrari, S.: Maximal Sobolev regularity for solutions of elliptic equations in Banach spaces endowed with a weighted Gaussian measure: the convex subset case. J. Math. Anal. Appl. 458, 300–331 (2018)

    Article  MATH  Google Scholar 

  8. Cardon-Weber, C.: Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli 7, 777–816 (2001)

    Article  MATH  Google Scholar 

  9. Cerrai, S.: Second order PDE’s in Finite and Infinite Dimension. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  10. Cerrai, S., Lunardi, A.: Schauder theorems for Ornstein–Uhlenbeck equations in infinite dimension. J. Differ. Equ. 267, 7462–7482 (2019)

    Article  MATH  Google Scholar 

  11. Da Prato, G.: Monotone gradient systems in L2 spaces. In: Dalang, R. C., Dozzi, M., Russo, F (eds.) Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), pp 73–88. Basel, Birkhäuser (2002)

  12. Da Prato, G., Debussche, A.: Stochastic Cahn–Hilliard equations. Nonlinear Anal. 26, 241–263 (1996)

    Article  MATH  Google Scholar 

  13. Da Prato, G., Debussche, A., Tubaro, L.: Irregular semi-convex gradient systems perturbed by noise and application to the stochastic Cahn–Hilliard equation. Ann. Inst. H. Poincaré, Probab. Statist. 40, 73–88 (2004)

    Article  MATH  Google Scholar 

  14. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations in Hilbert spaces perturbed by a bounded measurable drift. Ann. Probab. 41, 3306–3344 (2013)

    Article  MATH  Google Scholar 

  15. Da Prato, G., Flandoli, F., Priola, E., Röckner, M.: Strong uniqueness for stochastic evolution equations with unbounded measurable drift term. J. Theoret. Probab. 28, 1571–1600 (2015)

    Article  MATH  Google Scholar 

  16. Da Prato, G., Lunardi, A.: Sobolev regularity for a class of second order elliptic PDE’s in infinite dimension. Ann. Probab. 42, 2113–2160 (2014)

    Article  MATH  Google Scholar 

  17. Da Prato, G., Lunardi, A.: Maximal Sobolev regularity in Neumann problems for gradient systems in infinite dimensional domains. Ann. Inst. Henri Poincaré, Probab. Stat. 51, 1102–1123 (2015)

    Article  MATH  Google Scholar 

  18. Da Prato, G., Tubaro, L.: Self-adjointness of some infinite-dimensional elliptic operators and application to stochastic quantization. Probab. Theory Related Fields 118, 131–145 (2000)

    Article  MATH  Google Scholar 

  19. Da Prato, G., Zabczyk, J.: Second Order Partial Differential Equations in Hilbert Spaces. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  20. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  21. Dunford, N., Schwartz, J.T.: Linear Operators. Part II. Wiley, New York (1988)

    MATH  Google Scholar 

  22. Elworthy, K.D., Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125, 252–286 (1994)

    Article  MATH  Google Scholar 

  23. Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000)

    MATH  Google Scholar 

  24. Engel, K.-J., Nagel, R.: A Short Course on Operator Semigroups. Springer, New York (2006)

    MATH  Google Scholar 

  25. Es-Sarhir, A.: Existence and uniqueness of invariant measures for a class of transition semigroups on Hilbert spaces. J. Math. Anal. Appl. 353, 497–507 (2009)

    Article  MATH  Google Scholar 

  26. Es-Sarhir, A., Stannat, W.: Maximal dissipativity of Kolmogorov operators with Cahn–Hilliard type drift term. J. Differ. Equ. 247, 424–446 (2009)

    Article  MATH  Google Scholar 

  27. Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V.: Banach Space Theory. Springer, New York (2011)

    Book  MATH  Google Scholar 

  28. Federico, S., Gozzi, F.: Corrigendum to “Mild solutions of semilinear elliptic equations in Hilbert spaces” [J. Differential Equations 262 (2017) 3343–3389] [MR3584895]. J. Differential Equations 263, 6143–6144 (2017)

    Article  MATH  Google Scholar 

  29. Federico, S., Gozzi, F.: Mild solutions of semilinear elliptic equations in Hilbert spaces. J. Differ. Equ. 262, 3343–3389 (2017)

    Article  MATH  Google Scholar 

  30. Ferrari, S.: Sobolev spaces with respect to a weighted Gaussian measures in infinite dimensions. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 22 (2019)

  31. Fuhrman, M.: Smoothing properties of nonlinear stochastic equations in Hilbert spaces. NoDEA Nonlinear Differ. Equ. Appl. 3, 445–464 (1996)

    Article  MATH  Google Scholar 

  32. Gozzi, F.: Smoothing properties of nonlinear transition semigroups: case of Lipschitz nonlinearities. J. Evol. Equ. 6, 711–743 (2006)

    Article  MATH  Google Scholar 

  33. Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Springer, New York (1981)

    Book  MATH  Google Scholar 

  34. Lorenzi, L.: Analytical Methods for Kolmogorov Equations. CRC Press, Boca Raton (2017)

    MATH  Google Scholar 

  35. Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser/Springer Basel AG, Basel (1995)

    Book  MATH  Google Scholar 

  36. Masiero, F.: Semilinear Kolmogorov equations and applications to stochastic optimal control. Appl. Math. Optim. 51, 201–250 (2005)

    Article  MATH  Google Scholar 

  37. Masiero, F.: Regularizing properties for transition semigroups and semilinear parabolic equations in Banach spaces. Electron. J. Probab. 12, 387–419 (2007)

    Article  MATH  Google Scholar 

  38. Maslowski, B., Seidler, J.: Probabilistic approach to the strong Feller property. Probab. Theory Related Fields 118, 187–210 (2000)

    Article  MATH  Google Scholar 

  39. Metafune, G., Pallara, D., Wacker, M.: Feller semigroups on RN. Semigroup Forum 65, 159–205 (2002)

    Article  MATH  Google Scholar 

  40. Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  41. Pap, E.: Handbook of Measure Theory, vol. I, II. North-Holland, Amsterdam (2002)

    MATH  Google Scholar 

  42. Peszat, S., Zabczyk, J.: Strong Feller property and irreducibility for diffusions on Hilbert spaces. Ann. Probab. 23, 157–172 (1995)

    Article  MATH  Google Scholar 

  43. Royden, H.L.: Real Analysis. Macmillan Publishing Company, New York (1988)

    MATH  Google Scholar 

  44. Taira, K.: Boundary Value Problems and Markov Processes. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

  45. Zabczyk, J.: Parabolic equations on Hilbert spaces. In: Da Prato, G. (ed.) Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998), pp 117–213. Springer, Berlin (1999)

Download references

Acknowledgements

The authors would like to thank A. Lunardi for many useful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Bignamini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors are members of GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of the Italian Istituto Nazionale di Alta Matematica (INdAM). S. F. have been partially supported by the INdAM-GNAMPA Project 2019 “Metodi analitici per lo studio di PDE e problemi collegati in dimensione infinita”. The authors have been also partially supported by the research project PRIN 2015233N5A “Deterministic and stochastic evolution equations” of the Italian Ministry of Education, MIUR.

Appendix A: Proof of Theorem 8

Appendix A: Proof of Theorem 8

The aim of this section is to look for pathwise uniqueness of for Eq. 2.3.

Proof of Theorem 8

We first prove uniqueness. Let X1(t, x), X2(t, x) be two mild solutions of Eq. 2.3. Recall that by definition a mild solution solves

$$ X(t,x)=e^{tA}x+{{\int}_{0}^{t}}e^{(t-s)A}{\varPhi}(s,X(s,x))ds+{{\int}_{0}^{t}}e^{(t-s)A}Q^{\alpha}dW(s). $$

Hence, we have

$$ \begin{array}{@{}rcl@{}} \mathbb{E}[\left\|{X_{1}(t,x)-X_{2}(t,x)}\right\|^{2}]&=&\mathbb{E}\left[{\left\|{{{\int}_{0}^{t}}e^{(t-s)A}\left( {\varPhi}(s,X_{1}(s,x))-{\varPhi}(s,X_{2}(s,x))\right)ds}\right\|^{2}}\right]\\ &\leq& t\mathbb{E}\left[{{{\int}_{0}^{t}}\left\|{e^{(t-s)A}({\varPhi}(s,X_{1}(s,x))-{\varPhi}(s,X_{2}(s,x)))}\right\|^{2}ds}\right]\\ &\leq& t\mathbb{E}\left[{{{\int}_{0}^{t}}\left\|{{\varPhi}(s,X_{1}(s,x))-{\varPhi}(s,X_{2}(s,x))}\right\|^{2}ds}\right]\\ &\leq& tL_{{\varPhi}}^{2}{{\int}_{0}^{t}}\mathbb{E}\left[{\left\|{X_{1}(v,x)-X_{2}(v,x)}\right\|^{2}}\right]ds. \end{array} $$

From the Gronwall inequality and the same arguments of the proof of [20, Theorem 7.5] uniqueness follows.

The proof of existence is based on the contraction mapping theorem. We define the Volterra operator

$$V(Y)(t):=e^{tA}x+{{\int}_{0}^{t}}e^{(t-s)A}{\varPhi}(s,Y(s))ds+{{\int}_{0}^{t}}e^{(t-s)A}Q^{\alpha}dW(s),$$

in the space \(\mathcal {X}^{2}([0,T])\), and first of all we show that V maps \(\mathcal {X}^{2}[0,T]\) into itself. Indeed, for any \(Y\in \mathcal {X}^{2}[0,T]\) we have

$$ \begin{array}{@{}rcl@{}} \left\|{V(Y)}\right\|_{\mathcal{X}^{2}[0,T]}^{2}&\leq& 3\|e^{\cdot A}x\|_{\mathcal{X}^{2}[0,T]}^{2}+3\left\|{{\int}_{0}^{\cdot} e^{(\cdot-s)A}{\varPhi}(s,Y(s))ds}\right\|_{\mathcal{X}^{2}[0,T]}^{2}\\ &&+3\left\|{{\int}_{0}^{\cdot} e^{(\cdot -s)A}Q^{\alpha}dW(s)}\right\|_{\mathcal{X}^{2}[0,T]}^{2}. \end{array} $$
(A.1)

We recall that \(\|e^{tA}x\|_{\mathcal {X}^{2}[0,T]}^{2}\leq \left \|{x}\right \|^{2}\), for t > 0. Let \(y\in \mathcal {X}\) be such that Eq. 2.2 holds, then

$$ \begin{array}{@{}rcl@{}} &&\left\|{{\int}_{0}^{\cdot} e^{(\cdot-s)A}{\varPhi}(s,Y(s))ds}\right\|_{\mathcal{X}^{2}[0,T]}^{2}\\ &=&\underset{t\in[0,T]}{\sup}\mathbb{E}\left[\left\|{{{\int}_{0}^{t}}e^{(t-s)A}{\varPhi}(s,Y(s))ds}\right\|^{2}\right]\\ &\leq& T \mathbb{E}\left[{\int}_{0}^{T}\left\|{{\varPhi}(s,Y(s))}\right\|^{2}ds\right]\\ &\leq& 2T\mathbb{E}\left[{\int}_{0}^{T}\left\|{{\varPhi}(s,Y(s))-{\varPhi}(s,y)}\right\|^{2}ds\right]\\ &&+2T\mathbb{E}\left[{\int}_{0}^{T}\left\|{{\varPhi}(s,y)}\right\|^{2}ds\right]\\ &\leq& 2TL^{2}_{\phi}\mathbb{E}\left[{\int}_{0}^{T}\left\|{Y(s)-y}\right\|^{2}ds\right]+2T\mathbb{E}\left[{\int}_{0}^{T}\left\|{{\varPhi}(s,y)}\right\|^{2}ds\right]\\ &\leq& 4T^{2}L^{2}_{\phi}\left\|{Y}\right\|^{2}_{\mathcal{X}[0,T]^{2}}+4T^{2}L_{{\varPhi}}^{2}\left\|{y}\right\|^{2}+2T{{\int}_{0}^{T}}\left\|{{\varPhi}(s,y)}\right\|^{2}ds. \end{array} $$

Since \(Y\in \mathcal {X}^{2}[0,T]\) and recalling that Eq. 2.2 holds,

$$\left\|{{\int}_{0}^{\cdot} e^{(\cdot -s)A}{\varPhi}(s,Y(s))ds}\right\|_{\mathcal{X}^{2}[0,T]}^{2}<+\infty.$$

By [20, Theorem 4.36] and Hypothesis 1, the third summand in Eq. A.1 is finite. In the same way as the proof of uniqueness, we have

$$\left\|{V(Y_{1})-V(Y_{2})}\right\|_{\mathcal{X}^{2}[0,T]}^{2}\leq T^{2}L^{2}_{\phi} \left\|{Y_{1}-Y_{2}}\right\|_{\mathcal{X}^{2}[0,T]}^{2}.$$

So the existence follows by the contraction mapping theorem (using similar arguments as the one used in Theorem 19) and same arguments of proof of [20, Theorem 7.2]. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bignamini, D.A., Ferrari, S. Regularizing Properties of (Non-Gaussian) Transition Semigroups in Hilbert Spaces. Potential Anal 58, 1–35 (2023). https://doi.org/10.1007/s11118-021-09931-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09931-2

Keywords

Mathematics Subject Classification (2010)

Navigation