Skip to main content
Log in

Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Under investigation in this paper is a (3+1)-dimensional nonlinear evolution equation, which was proposed and analyzed to study features and properties of nonlinear dynamics in higher dimensions. Using the Hirota bilinear method, we construct a bilinear Bäcklund transformation, which consists of four equations and involves six free parameters. With test function method and symbolic computation, three sets of lump–kink solutions and new types of interaction solutions are derived, and figures are presented to reveal the interaction behaviors. Setting constraints to the new interaction solution via the test function expressed by “polynomial-cos-cosh,” we simulate the periodic interaction phenomenon. Pfaffian solutions to the (3+1)-dimensional nonlinear evolution equation are obtained based on a set of linear partial differential conditions. According to our results, the diversity of solutions to the (3+1)-dimensional nonlinear evolution equation is revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lonngren, K.E.: Ion acoustic soliton experiments in a plasma. Opt. Quantum Electron 30, 615 (1998)

    Google Scholar 

  2. Seadawy, A.R.: Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma. Comput. Math. Appl. 67, 172 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733 (2020)

  4. Lü, X., Ma, W.X., Yu, J., Khalique, C.M.: Solitary waves with the Madelung fluid description: a generalized derivative nonlinear Schr\(\ddot{o}\)dinger equation. Commun. Nonlinear Sci. Numer. Simul. 31, 40 (2016)

    MathSciNet  Google Scholar 

  5. Liu, L., Zhu, L.L., Yang, D.: Modeling and simulation of the car-truck heterogeneous traffic flow based on a nonlinear car-following model. Appl. Math. Comput. 273, 706 (2016)

    MATH  Google Scholar 

  6. Nagatani, T.: Traffic flow on star graph: nonlinear diffusion. Physica A 561, 125251 (2021)

    MathSciNet  Google Scholar 

  7. Guo, H., Xiao, X.P.: Urban road short-term traffic flow forecasting based on the delay and nonlinear grey model. J. Transp. Syst. Eng. Inf. Technol. 13, 60 (2013)

    Google Scholar 

  8. Bhrawy, A.H., Abdelkawy, M.A., Biswas, A.: Topological solitons and cnoidal waves to a few nonlinear wave equations in theoretical physics. Indian J. Phys. 87, 1125 (2013)

    Google Scholar 

  9. Li, H., Xu, S.L.: Three-dimensional solitons in Bose-Einstein condensates with spin-orbit coupling and Bessel optical lattices. Phys. Rev. A 98, 033827 (2018)

    Google Scholar 

  10. Guo, Y.W., Xu, S.L.: Transient optical response of cold Rydberg atoms with electromagnetically induced transparency. Phys. Rev. A 101, 023806 (2020)

    Google Scholar 

  11. Xu, S.L., Li, H., Zhou, Q.: Parity-time symmetry light bullets in a cold Rydberg atomic gas. Opt. Express 28, 16322–16332 (2020)

    Google Scholar 

  12. Hirota, R.: The Direct Method in Soliton Theory. Cambridge Univ. Press, Cambridge (2004)

    MATH  Google Scholar 

  13. Xia, J.W., Zhao, Y.W., Lü, X.: Predictability, fast calculation and simulation for the interaction solutions to the cylindrical Kadomtsev-Petviashvili equation. Commun. Nonlinear Sci. Numer. Simul. 90, 105260 (2020)

    MathSciNet  MATH  Google Scholar 

  14. Chen, S.J., Lü, X.: Novel evolutionary behaviors of the mixed solutions to a generalized Burgers equation with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 95, 105628 (2021)

    MathSciNet  MATH  Google Scholar 

  15. He, X. J., Lü, X.: B\(\ddot{a}\)cklund transformation, Pfaffian, Wronskian and Grammian solutions to the (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Analysis and Mathematical Physics, 11, No.4 (2020)

  16. Meng, Q.: Rational solutions and interaction solutions for a fourth-order nonlinear generalized Boussinesq water wave equation. Appl. Math. Lett. 110, 106580 (2020)

    MathSciNet  MATH  Google Scholar 

  17. Hua, Y.F.: Interaction behavior associated with a generalized (2+1)-dimensional Hirota bilinear equation for nonlinear waves. Appl. Math. Model. 74, 185 (2019)

    MathSciNet  Google Scholar 

  18. Liu, N., Liu, Y.S.: New multi-soliton solutions of a (3+1)-dimensional nonlinear evolution equation. Comput. Math. Appl. 71, 1645 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Dai, C.Q., Wang, Y.Y., Zhang, X.F.: Spatiotemporal localizations in (3+1)-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453 (2016)

    MathSciNet  Google Scholar 

  21. Lü, X., Ma, W.X., Yu, J., Lin, F.H., Khalique, C.M.: Envelope bright- and dark-soliton solutions for the Gerdjikov-Ivanov model. Nonlinear Dyn. 82, 1211 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Yin, Y.H., Chen, S.J., Lü, X.: Study on localized characteristics of lump and interaction solutions to two extended Jimbo-Miwa equations. Chin. Phys. B 29, 120502 (2020)

  23. Lü, X., Chen, S.J.: Interaction solutions to nonlinear partial differential equations via Hirota bilinear forms: One-lump-multi-stripe and one-lump-multi-soliton types. Nonlinear Dyn. 103, 947 (2021)

    Google Scholar 

  24. Ma, W.X., Fan, E.G.: Linear superposition principle applying to Hirota bilinear equations. Comp. Math. Appl. 61, 950 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Ma, W.X., Zhang, Y., Tang, Y.N., Tu, J.Y.: Hirota bilinear equations with linear subspaces of solutions. Appl. Math. Comput. 218, 7174 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Ma, W.X., Abdeljabbar, A.: A bilinear Backlund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett. 25, 1500 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Ma, W.X., Qin, Z.Y., Lü, X.: Lump solutions to dimensionally reduced p-gKP and p-gBKP equations. Nonlinear Dyn. 84, 923 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Ma, W.X.: Lump solutions to the Kadomtsev-Petviashvili equation. Phys. Lett. A 379, 1975 (2015)

    MathSciNet  MATH  Google Scholar 

  29. Chen, S.J., Lü, X, Li, M. G., Wang, F.: Derivation and simulation of the M-lump solutions to two(2+1)-dimensional nonlinear equations. Phys. Scr. 96, 095201 (2021)

  30. Li, L.F., Xie, Y.Y., Mei, L.Q.: Multiple-order rogue waves for the generalized (2+1)-dimensional Kadomtsev-Petviashvili equation. Appl. Math. Lett. 117, 107079 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Lü, X., Hua, Y.F., Chen, S.J., Tang, X.F.: Integrability characteristics of a novel (2+1)-dimensional nonlinear model: Painlevé analysis, soliton solutions, Bäcklund transformation, Lax pair and infinitely many conservation laws. Commun. Nonlinear Sci. Numer. Simul. 95, 105612 (2021)

    MATH  Google Scholar 

  32. Zha, Q.L.: Rogue waves and rational solutions of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A 377, 3021 (2013)

    MathSciNet  MATH  Google Scholar 

  33. Geng, X.G., Ma, Y.L.: N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation. Phys. Lett. A 369, 285 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Xu, H.N., Ruan, W.Y., Zhang, Y., Lü, X.: Multi-exponential wave solutions to two extended Jimbo-Miwa equations and the resonance behavior. Appl. Math. Lett. 99, 105976 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian. Phys. Lett. A 95, 4 (1983)

    MathSciNet  Google Scholar 

  36. Li, C.X., Zeng, Y.B.: Soliton solutions to a higher order Ito equation: Pfaffian technique. Phys. Lett. A 363, 4 (2007)

    MathSciNet  MATH  Google Scholar 

  37. Ohta, Y.: Pfaffian solution for coupled discrete nonlinear Schr\(\ddot{o}\)dinger equation. Chaos, Solitons Fractals 11, 91 (2000)

    MathSciNet  Google Scholar 

  38. Tang, Y.N.: Pfaffian solutions and extended Pfaffian solutions to (3+1)-dimensional Jimbo-Miwa equation. Appl. Math. Mode 37, 6632 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Ohta, Y.: Pfaffian solution for coupled discrete nonlinear Schr\(\ddot{o}\)dinger equation. Chaos, Solitons Fractals 11, 92 (2000)

    Google Scholar 

  40. Hirota, R.: Soliton solutions to the BKP equations-I. The Pfaffian technique, J. Phys. Soc. Jpn., 58, 2286 (1989)

  41. Chen, S.J., Ma, W.X., Lü, X.: Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    MathSciNet  MATH  Google Scholar 

  42. Gao, L.N., Zhao, X.Y., Zi, Y.Y., Yu, J., Lü, X.: Resonant behavior of multiple wave solutions to a Hirota bilinear equation. Comp. Math. Appl. 72, 1225 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Fang, T., Wang, Y.H.: Interaction solutions for a dimensionally reduced Hirota bilinear equation. Comput. Math. Appl. 76, 1476 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Saha, A.: Dynamics of the generalized KP-MEW-Burgers equation with external periodic perturbation. Computers Mathematics with Applications 73, 1880 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Abdel-Gawad, H.I., Tantawy, M.: Two-layer fluid formation and propagation of periodic solitons induced by (3+1)-dimensional KP equation. Computers Mathematics with Applications 78, 2011 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, H.Y., Zhang, Y.F.: Analysis on the M-rogue wave solutions of a generalized (3+1)-dimensional KP equation. Appl. Math. Lett. 102, 106145 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project of National Training Program of Innovation and Entrepreneurship for Postgraduates (2021YJS172) and the National Natural Science Foundation of China under Grant No. 71971015.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Lü or Wen-Xiu Ma.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Data availability statement

Our manuscript has no associated data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, YH., Lü, X. & Ma, WX. Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn 108, 4181–4194 (2022). https://doi.org/10.1007/s11071-021-06531-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06531-y

Keywords

Navigation