Skip to main content
Log in

Dynamic of the smooth positons of the higher-order Chen–Lee–Liu equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the degenerate Darboux transformation, the n-positon solution of the higher-order Chen–Lee–Liu (HOCLL) equation are obtained by the special limit \(\lambda _{j}\rightarrow \lambda _{1}\) taking from the corresponding n-soliton solution, and using the higher-order Taylor expansion. Using the method of the modulus square decomposition, n-positon is decomposed into n single soliton solutions. The dynamic properties of smooth positon of the HOCLL equation are discussed in detail, and the corresponding trajectory, approximate trajectory and “phase shift” are obtained. In addition, the mixed solutions of soliton and positon are discussed, and the corresponding three-dimensional map are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this article are available from the corresponding author, upon reasonable request.

References

  1. Matveev, V.B.: Generalized Wronskian formula for solutions of the KdV equations: first applications. Phys. Lett. A 166, 205–208 (1992)

    Article  MathSciNet  Google Scholar 

  2. Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)

    Article  MathSciNet  Google Scholar 

  3. Chow, K.W., Lai, W.C., Shek, C.K., Tso, K.: Positon-like solutions of nonlinear evolution equations in (2 + 1) dimensions. Chaos Solitons Fractals 9, 1901–1912 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dubard, P., Gaillard, P., Klein, C., Matveev, V.B.: On multi-rogue wave solutions of the NLS equation and positon solutions of the KdV equation. Eur. Phys. J. Special Topics 185, 247–258 (2010)

    Article  Google Scholar 

  5. Stahlofen, A.A.: Positons of the modified Korteweg-de Vries equation. Ann. Phys. 504, 554–569 (1992)

    Article  MathSciNet  Google Scholar 

  6. Beutler, R.: Positon solutions of the sine-Gordon equation. J. Math. Phys. 34, 3081–3109 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Andreev, V.A., Brezhnev, Y.V.: Darboux transformation, positons and general superposition formula for the sine-Gordon equation. Phys. Lett. A 38, 58–66 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rasinariu, C., Sukhatme, U., Khare, A.: Negaton and positon solutions of the KdV and mKdV hierarchy. J. Phys. A 29, 1803–1823 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beutler, R.: Positon solutions of the Sinh-Gordon equation. In: Spatschek, K.H., Mertens, F.G. (eds.) Nonlinear coherent structures in physics and biology, pp. 267–270. Springer, New York (1994)

    Chapter  Google Scholar 

  10. Li, M., Li, M.H., He, J.S.: Degenerate solutions for the spatial discrete Hirota equation. Nonlinear Dyn. 102, 1825–1836 (2020)

    Article  Google Scholar 

  11. Xing, Q.X., Wu, Z.W., Mihalache, D., He, J.S.: Smooth positon solutions of the focusing modified Korteweg-de Vries equation. Nonlinear Dyn. 89, 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  12. Matveev, V.B.: Positons slowly decreasing analogues of solitons. Theor. Math. Phys. 131, 483–497 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Beutler, R., Stahlhofen, A.A., Matveev, V.B.: What do solitons, breathers and positons have in common? Phys. Scr. 50, 9–20 (1994)

    Article  Google Scholar 

  14. Wadati, M.: The modified Korteweg-de Vries equation. J. Phys. Soc. Jpn. 34, 1289–1296 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  15. Raza, A., Ahmadian, A., Rafiq, M., Salahshour, S., Ferrara, M.: An analysis of a nonlinear susceptible-exposed-infected-quarantine-recovered pandemic model of a novel coronavirus with delay effect. Results Phys. 21, 103771 (2021)

    Article  Google Scholar 

  16. Shatanawi, W., Raza, A., Arif, M.S., Rafiq, M., Bibi, M., Mohsin, M.: Essential features preserving dynamics of stochastic dengue model. CMES Comput. Model. Eng. Sci. 126(1), 201–215 (2021)

    Google Scholar 

  17. Raza, A., Ahmadian, A., Rafiq, M., Salahshour, S., Naveed, M.: Modeling the effect of delay strategy on transmission dynamics of HIV/AIDS disease. Adv. Differ. Equ. 663, 1–13 (2020)

    MathSciNet  Google Scholar 

  18. Malik, M.R., Macas-Daz, J.E., Raza, A., Ahmed, N.: Design and stability analysis of a nonlinear SEIQR infectious model and its efficient non-local computational implementation. Appl. Math. Model. 89, 1835–1846 (2021)

    Article  MathSciNet  Google Scholar 

  19. Wu, J.: N-soliton solution, generalized double Wronskian determinant solution and rational solution for a (2 + 1)-dimensional nonlinear evolution equation. Phys. Lett. A 373, 83–88 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Osman, M.S., Inc, M., Liu, J.G., Hosseini, K., Yusuf, A.: Different wave structures and stability analysis for the generalized (2+1)-dimensional Camassa-Holm-Kadomtsev-Petviashvili equation. Phys. Scr. 95, 035229 (2020)

    Article  Google Scholar 

  21. Ismael, H.F., Bulut, H., Park, C., Osman, M.S.: M-lump, N-soliton solutions, and the collision phenomena for the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Results Phys. 19, 562 (2020)

    Article  Google Scholar 

  22. Liu, J.G., Osman, M.S., Zhu, W.H., Zhou, L., Baleanu, D.: The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium. AIP Adv. 10, 105325 (2020)

    Article  Google Scholar 

  23. Osman, M.S.: One-soliton shaping and inelastic collision between double solitons in the fifth-order variable-coefficient Sawada-Kotera equation. Nonlinear Dyn. 96, 1491–1496 (2019)

    Article  MATH  Google Scholar 

  24. Osman, M.S.: New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana 93, 26 (2019)

    Article  Google Scholar 

  25. Yang, J.W., Gao, Y.T., Feng, Y.J., Su, C.Q.: Solitons and dromion-like structures in an inhomogeneous optical fiber. Nonlinear Dyn. 87, 851–862 (2017)

    Article  Google Scholar 

  26. Yin, H.M., Tian, B., Zhang, C.R., Du, X.X., Zhao, X.C.: Optical breathers and rogue waves via the modulation instability for a higher-order generalized nonlinear Schrödinger equation in an optical fiber transmission system. Nonlinear Dyn. 97, 843–852 (2019)

    Article  MATH  Google Scholar 

  27. Yu, W.T., Liu, W.J., Triki, H., Zhou, Q., Biswas, A.: Phase shift, oscillation and collision of the anti-dark solitons for the (3 + 1)-dimensional coupled nonlinear Schrödinger equation in an optical fiber communication system. Nonlinear Dyn. 97, 1253–1262 (2019)

    Article  MATH  Google Scholar 

  28. Ma, Y.L.: Interaction and energy transition between the breather and rogue wave for a generalized nonlinear Schrödinger system with two higher-order dispersion operators in optical fibers. Nonlinear Dyn. 97, 95–105 (2019)

    Article  MATH  Google Scholar 

  29. Kang, Z.Z.T., Xia, C., Ma, W.X.: Riemann-Hilbert approach and N-soliton solution for an eighth-order nonlinear Schrödinger equation in an optical fiber. Adv. Differ. Equ. 188, 1–14 (2019)

    MATH  Google Scholar 

  30. Baleanu, D., Osman, M.S., Zubair, A., Raza, N., Arqub, O.A., Ma, W.X.: Soliton solutions of a nonlinear fractional Sasa-Satsuma equation in monomode optical fibers. Appl. Math. Inf. Sci. 14, 365–374 (2020)

    Article  MathSciNet  Google Scholar 

  31. Potasek, M.J., Tabo, M.: Exact solutions for an extended nonlinear Schrödinger equation. Phys. Lett. A 154, 449–452 (1991)

    Article  MathSciNet  Google Scholar 

  32. Trippenbach, M., Band, Y.B.: Effects of self-steepening and self-frequency shifting on short-pulse splitting in dispersive nonlinear media. Phys. Rev. A 57, 4791–4803 (1998)

    Article  Google Scholar 

  33. Agrawal, G.P.: Nonliear fiber optics, 5th edn. Academic, San Diego (2012)

    Google Scholar 

  34. Hasegawa, A., Tappert, F.: Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers: I anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973)

    Article  Google Scholar 

  35. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. Lett. 14, 9–805 (1973)

    MathSciNet  MATH  Google Scholar 

  36. Kundu, A.: Landau-Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations. J. Math. Phys. Lett. 25, 3433–3438 (1973)

    Article  Google Scholar 

  37. Calogero, F., Eckhaus, W.: Nonlinear evolution equations, rescalings, model PDEs and their integrability. Inverse Probl. 3, 62–229 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  38. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one-dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 16–1807 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equations. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

  40. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian system by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  41. Moses, J., Malomed, B.A., Wise, F.W.: Self-steepening of ultrashort optical pulses without self-phase-modulation. Phys. Rev. A 76, 021802 (2007)

    Article  Google Scholar 

  42. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generalized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1529 (1995)

    Article  MATH  Google Scholar 

  43. Nakamura, A., Chen, H.H.: Multi soliton solutions of a derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 49, 813–816 (1980)

    Article  MATH  Google Scholar 

  44. Zhang, Y.S., Guo, L.J., He, J.S.: Higher-order rogue wave dynamics for a derivative nonlinear Schrödinger equation. Lett. Math. Phys. 105, 853 (2015)

    Article  MathSciNet  Google Scholar 

  45. Liu, S.Z., Zhang, Y.S., He, J.S.: Smooth positons of the second-type derivative nonlinear Schrödinger equation. Commun. Theor. Phys. 71, 357–361 (2019)

    Article  MATH  Google Scholar 

  46. Zhang, J., Liu, W., Qiu, D.Q., Zhang, Y.S., Porsezian, K., He, J.S.: Rogue wave solutions of a higher-order Chen-Lee-Liu equation. Phys. Scr. 90, 055207 (2015)

    Article  Google Scholar 

  47. Hu, J., Xu, J., Yu, G.F.: Riemann-Hilbert approach and N-soliton formula for a higher-order Chen-Lee-Liu equation. J. Math. Phys. 25, 633–649 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Liu, W., Zhang, Y.S., He, J.S.: Dynamics of the smooth positons of the complex modified KdV equation. Waves Random Complex 28, 203–214 (2018)

    Article  MathSciNet  Google Scholar 

  49. Song, W.J., Xu, S.W., Li, M.H., He, J.S.: Generating mechanism and dynamic of the smooth positons for the derivative nonlinear Schrödinger equation. Nonlinear Dyn. 97, 2135–2145 (2019)

    Article  MATH  Google Scholar 

  50. He, J.S., Zhang, H.R., Wang, L.H., Porsezian, K., Fokas, A.S.: Generating mechanism for higher-order rogue waves. Phys. Rev. E 87, 052914 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of Zhejiang Province under Grant Nos. LY15A010005, the Natural Science Foundation of Ningbo under Grant No. 2018A610197, the NSF of China under Grant No. 12071304, K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maohua Li.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Ethical statement

Authors declare that they comply with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Li, M. & He, J. Dynamic of the smooth positons of the higher-order Chen–Lee–Liu equation. Nonlinear Dyn 104, 4329–4338 (2021). https://doi.org/10.1007/s11071-021-06547-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06547-4

Keywords

Navigation