Skip to main content
Log in

Event-triggered-based adaptive decentralized asymptotic tracking control scheme for a class of nonlinear pure-feedback interconnected systems

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper focuses on the adaptive decentralized asymptotic tracking control problem for a family of nonlinear pure-feedback interconnected systems. Through the ingenious backstepping-based design, the controllers of all subsystems are developed to mitigate the effects of system interconnections. These controllers only need to update two parameters online in each subsystem; thus, the complexity of analytic calculations is successfully reduced. In addition, in order to acquire the desired tracking performance, some significant mathematical methods are used to eliminate the influence of the residual errors caused by the estimation algorithm. By Lyapunov analysis method, the semi-globally uniformly boundedness of all the signals in the resulting closed-loop system is proven. The proposed scheme has its own advantages: (1) hold the asymptotic output tracking performance; (2) release the requirements for known nonlinear terms in the design procedure; (3) reduce the transmitting frequency of computer and make the use of computer resources more efficient. Finally, rich simulation results are given to show the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Li, J., Chen, W., Li, J.: Adaptive NN output-feedback decentralized stabilization for a class of largescale stochastic nonlinear strict-feedback systems. Int. J. Robust Nonlinear Control 21(4), 452–472 (2011)

    Article  Google Scholar 

  2. Xia, X., Zhang, T., Zhu, J., Yi, Y.: Adaptive output feedback dynamic surface control of stochastic nonlinear systems with state and input unmodeled dynamics. Int. J. Adapt. Control Signal Process. 30(6), 864–887 (2016)

    Article  MathSciNet  Google Scholar 

  3. Yang, C., Jiang, Y., Li, Z., He, W., Su, C.: Neural control of bimanual robots with guaranteed global stability and motion precision. IEEE Trans. Ind. Inf. 13(3), 1162–1171 (2017)

    Article  Google Scholar 

  4. Mao, J., Xiang, Z., Zhai, G.: Global practical stabilisation of a class of switched nonlinear systems via sampled-data control. Int. J. Control 16, 1891–1906 (2020)

    Article  MathSciNet  Google Scholar 

  5. Bin, M., Marconi, L.: Model identification and adaptive state observation for a class of nonlinear systems. IEEE Trans. Autom. Control (2020). https://doi.org/10.1109/TAC.2020.3041238

    Article  Google Scholar 

  6. Liu, J., Niu, B., Zhao, P., Li, X., Qi, W.: Almost fast finite-time adaptive tracking control for a class of full-state constrained pure-feedback nonlinear systems. Int. J. Robust Nonlinear Control 30(17), 7517–7532 (2020)

    Article  MathSciNet  Google Scholar 

  7. Gao, S., Dong, H., Ning, B.: Neural adaptive dynamic surface control for uncertain strict-feedback nonlinear systems with nonlinear output and virtual feedback errors. Nonlinear Dyn. 90(4), 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Van, M., Ge, S.: Adaptive fuzzy integral sliding mode control for robust fault tolerant control of robot manipulators with disturbance observer. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2973955

    Article  Google Scholar 

  9. Li, Y., Tong, Y.: Adaptive fuzzy output-feedback control for switched nonlinear systems with arbitrary switchings. Circuits Syst. Signal Process. 35(9), 3152–3171 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ros Hctor, D., Perruquetti, W.: An adaptive sliding-mode observer for a class of uncertain nonlinear systems. Int. J. Adapt. Control Signal Process 32(5), 511–527 (2018)

    MathSciNet  Google Scholar 

  11. Niu, B., Zhao, P., Liu, J., Ma, H., Liu, Y.: Global adaptive control of switched uncertain nonlinear systems: an improved MDADT method. Automatica 115, 108872 (2020)

    Article  MathSciNet  Google Scholar 

  12. Niu, B., Liu, M., Li, A.: Global adaptive stabilization of stochastic high-order switched nonlinear non-lower triangular systems. Syst. Control Lett. 136, 104596 (2020)

    Article  MathSciNet  Google Scholar 

  13. Yen, V., Nan, W., Cuong, P.: Recurrent fuzzy wavelet neural networks based on robust adaptive sliding mode control for industrial robot manipulators. Neural Comput. Appl. 31(11), 6945–6958 (2019)

    Article  Google Scholar 

  14. Ji, W., Qiu, J., Karimi, H.: Fuzzy-model-based output feedback sliding mode control for discrete-time uncertain nonlinear systems. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2917127

    Article  Google Scholar 

  15. Zhou, J., Wen, C., Wang, W.: Adaptive control of uncertain nonlinear systems with quantized input signal. Automatica 95, 152–162 (2018)

    Article  MathSciNet  Google Scholar 

  16. Chen, Q., Lou, C., Nan, Y., Tao, L.: Adaptive support vector regression modeling and dynamic surface control of a class of uncertain nonlinear systems. Kongzhi yu Juece/Control Decis. 34(1), 63–71 (2019)

    MATH  Google Scholar 

  17. Liang, M., Wang, C., Chai, Y.: An adaptive control of fractional-order nonlinear uncertain systems with input saturation. Complexity 1, 1–17 (2019)

    MATH  Google Scholar 

  18. Mohammadpour, O., Tavasoli, A.: A new discrete-time robust adaptive time-delay control for a class of uncertain nonlinear strict-feedback systems using sliding mode. ISA Trans. 93, 40–54 (2019)

    Article  Google Scholar 

  19. Choe, R., Xargay, E., Hovakimyan, N.: Adaptive control for a class of uncertain nonaffine-in-control Nonlinear Systems. IEEE Trans. Autom. Control 61(3), 840–846 (2016)

    Article  MathSciNet  Google Scholar 

  20. Kong, J., Niu, B., Wang, Z., Zhao, P., Qi, W.: Adaptive output-feedback neural tracking control for uncertain switched MIMO nonlinear systems with timedelays. Int. J. Syst. Sci. (2021). https://doi.org/10.1080/00207721.2021.1909775

    Article  Google Scholar 

  21. Jiang, K., Niu, B., Wang, X., Xiang, Z., Li, J., Duan, P., Yang, D.: Adaptive approximation-based design mechanism for non-strict-feedback nonlinear MIMO systems with application to continuous stirred tank reactor. ISA Trans. 100, 92–102 (2020)

    Article  Google Scholar 

  22. Xi, C., Dong, J.: Adaptive neural network-based control of uncertain nonlinear systems with time-varying full-state constraints and input constraint. Neurocomputing 357(10), 108–115 (2019)

    Article  MathSciNet  Google Scholar 

  23. Chu, H., Wang, Y., Li, W.: Networked output feedback control for a class of uncertain nonlinear time-delay systems. Discrete Dyn. Nat. Soc. 1, 1–8 (2019)

    Article  MathSciNet  Google Scholar 

  24. Cheng, L., Wang, Z., Jiang, F., Li, J.: Adaptive neural network control of nonlinear systems with unknown dynamics. Adv. Space Res. (2020). https://doi.org/10.1016/j.asr.2020.10.052

    Article  Google Scholar 

  25. Niu, B., Wang, D., Alotaibi, N., Alsaadi, F.: Adaptive neural state-feedback tracking control of stochastic nonlinear switched systems: an average dwell-time method. IEEE Trans. Neural Netw. Learn. Syst. 30(4), 1076–1087 (2019)

    Article  MathSciNet  Google Scholar 

  26. Liang, Y., Zhang, H., Zhang, K., Wang, R.: A novel neural network discrete-time optimal control design for nonlinear timedelay systems using adaptive critic designs. Opt. Control Appl. Methods (2020). https://doi.org/10.1002/oca.2567

    Article  Google Scholar 

  27. Niu, B., Wang, D., Liu, M., Song, X., Wang, H., Duan, P.: Adaptive neural output-feedback controller design of switched nonlower triangular nonlinear systems with time delays. IEEE Trans. Neural Netw. Learn. Syst. 31(10), 4084–4093 (2020)

    Article  MathSciNet  Google Scholar 

  28. Liu, J., Niu, B., Kao, Y., Zhao, P., Yang, D.: Decentralized adaptive command filtered neural tracking control of large-scale nonlinear systems: an almost fast finite-time framework. IEEE Trans. Neural Netw. Learn. Syst. (2020). https://doi.org/10.1109/TNNLS.2020.3015847

    Article  Google Scholar 

  29. Zhou, Q., Zhao, S., Li, H.: Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans. Neural Netw. Learn. Syst. 30(12), 3611–3620 (2019)

    Article  MathSciNet  Google Scholar 

  30. Sun, Y., Wang, F., Liu, Z., Chen, C.: Fixed-time fuzzy control for a class of nonlinear systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3018695

    Article  Google Scholar 

  31. Rahmani, B., Belkheiri, M.: Adaptive neural network output feedback control for flexible multi-link robotic manipulators. Int. J. Control 15, 2324–2338 (2019)

    Article  MathSciNet  Google Scholar 

  32. Mostafa, H., El-Sharkawy, M., Emary, A., Yassin, K.: Designand allocation of power system stabilizers using the particle swarm optimization technique for an interconnected power system. Int. J. Electr. Power Energy Syst. 34(1), 57–65 (2012)

    Article  Google Scholar 

  33. Zhang, K., Zhang, H., Mu, Y., Liu, C.: Decentralized tracking optimization control for partially unknown fuzzy interconnected systems via reinforcement learning method. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2966418

    Article  Google Scholar 

  34. Zhang, L., Hua, C., Cheng, G., Guan, K.: Decentralized adaptive output feedback fault detection and control for uncertain nonlinear interconnected systems. IEEE Trans. Cybern. 50(3), 935–945 (2020)

    Article  Google Scholar 

  35. Labiod, S., Boubertakh, H., Bouhali, O., Marie Guerra, T.: Decentralized sliding mode control for a class of nonlinear interconnected systems. In: 1st International Meeting on Electronics Electrical Science and Engineering (2006)

  36. Li, Y., Yang, T., Liu, L., Feng, G., Tong, S.: Finite-time optimal control for interconnected nonlinear systems. Int. J. Robust Nonlinear Control 30(8), 3451–3470 (2020)

    Article  MathSciNet  Google Scholar 

  37. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybern. 45(1), 138–149 (2014)

    Article  Google Scholar 

  38. Ling, S., Wang, H., Liu, P.: Fixed-time adaptive event-triggered tracking control of uncertain nonlinear systems. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05578-7

    Article  Google Scholar 

  39. Wang, M., Wang, L., Huang, R., Yang, C.: Event-based disturbance compensation control for discrete-time SPMSM with mismatched disturbances. Int. J. Syst. Sci. 52(4), 785–804 (2021)

    Article  MathSciNet  Google Scholar 

  40. Postoyan, R., Paulo, T., Dragan, N., Adolfo, A.: A framework for the event-triggered stabilization of nonlinear systems. IEEE Trans. Autom. Control 60(4), 982–996 (2015)

    Article  MathSciNet  Google Scholar 

  41. Liang, H., Guo, X., Pan, Y., Huang, T.: Event-triggered fuzzy bipartite tracking control for network systems based on distributed reduced-order observers. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2982618

    Article  Google Scholar 

  42. Zhou, Q., Wang, W., Liang, H., Basin, M., Wang, B.: Observer-based event-triggered fuzzy adaptive bipartite containment control of multi-agent systems with input quantization. IEEE Trans. Fuzzy Syst. (2019). https://doi.org/10.1109/TFUZZ.2019.2953573

    Article  Google Scholar 

  43. Yao, X., Park, J., Ding, H., Ge, M.: Event-triggered consensus control for networked under-actuated robotic systems. IEEE Trans. Cybern. (2020). https://doi.org/10.1109/TCYB.2020.3025604

    Article  Google Scholar 

  44. Zhu, Z., Pan, Y., Zhou, Q., Lu, C.: Event-triggered adaptive fuzzy control for stochastic nonlinear systems with unmeasured states and unknown backlash-like hysteresis. IEEE Trans. Fuzzy Syst. (2020). https://doi.org/10.1109/TFUZZ.2020.2973950

  45. Yao, X., Park, J., Ding, H., Ge, M.: Coordination of a class of underactuated systems via sampled-data-based event-triggered schemes. IEEE Trans. Syst. Man Cybern. Syst. (2021). https://doi.org/10.1109/TSMC.2020.3048201

    Article  Google Scholar 

  46. Hu, X., Yu, H., Fei, H.: Lyapunov-based event-triggered control for nonlinear plants subject to disturbances and transmission delays. Chin. Sci. 63(5), 142–156 (2020)

    Article  MathSciNet  Google Scholar 

  47. Mustafa, A., Dhar, N., Verma, N.: Event-triggered sliding mode control for trajectory tracking of nonlinear systems. IEEE/CAA J. Autom. Sin. (2020). https://doi.org/10.1109/JAS.2019.1911654

    Article  MathSciNet  Google Scholar 

  48. Zhao, Q., Sun, J., Bai, Y.: Dynamic event-triggered control for nonlinear systems: a small-gain approach. J. Syst. Sci. Complex. 33(4), 930–943 (2020)

    Article  MathSciNet  Google Scholar 

  49. Li, Y., Tong, S.: Adaptive neural networks decentralized FTC design for nonstrict-feedback nonlinear interconnected large-scale systems against actuator faults. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 1–14 (2017)

    Article  MathSciNet  Google Scholar 

  50. Zhou, Q., Du, P., Li, H., Lu, R., Yang, J.: Adaptive fixed-time control of error-constrained pure-Feedback interconnected nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2020). https://doi.org/10.1109/TSMC.2019.2961371

    Article  Google Scholar 

  51. Du, P., Liang, H., Huang, T., Li, T.: Decentralized finite-time neural control for time-varying state constrained nonlinear interconnected systems in pure-feedback form. Neurocomputing 365(6), 201–210 (2019)

    Article  Google Scholar 

  52. Ge, S., Wang, C.: Adaptive NN control of uncertain nonlinear pure-feedback systems. Automatica 38(4), 671–682 (2002)

    Article  MathSciNet  Google Scholar 

  53. Song, J., Yan, M., Yang, P.: Neural adaptive dynamic surface asymptotic tracking control for a class of uncertain nonlinear system. Circuits Syst. Signal Process. 99, 1–26 (2020)

    Google Scholar 

  54. Sun, Y., Chen, B., Lin, C., Wang, H.: Adaptive neural control for a class of stochastic non-strict-feedback nonlinear systems with time-delay. Neurocomputing 214, 750–757 (2016)

    Article  Google Scholar 

  55. Kristic, M., Kokotovic, P.V., Kanellakopoulos, I.: Nonlinear and Adaptive Control Design. Springer Berlin Heidelberg, Berlin (2003)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China, under Grant 61873151 and Grant 62073201; and in part by the Shandong Provincial Natural Science Foundation of China, under Grant ZR2019MF009; and the Taishan Scholar Project of Shandong Province of China, under Grant NO. tsqn20190-9078; and the Major Scientific and Technological Innovation Project of Shandong Province, China, under Grant NO. 2019JAZZ020812; and in part by the Major Program of Shandong Province Natural Science Foundation, China, under Grant ZR2018ZB0419. In addition, the authors would also like to thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangju Zhang or Ben Niu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jiang, K., Zhang, G. et al. Event-triggered-based adaptive decentralized asymptotic tracking control scheme for a class of nonlinear pure-feedback interconnected systems. Nonlinear Dyn 104, 3881–3895 (2021). https://doi.org/10.1007/s11071-021-06560-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06560-7

Keywords

Navigation