Skip to main content

Advertisement

Log in

Immune System Effects on Breast Cancer

  • Review
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Breast cancer is one of the most common cancers in women, with the ability to metastasize to secondary organs, which is the main cause of cancer-related deaths. Understanding how breast tumors progress is essential for developing better treatment strategies against breast cancer. Until recently, it has been considered that breast cancer elicits a small immune response. However, it is now clear that breast tumor progression is either prevented by the action of antitumor immunity or exacerbated by proinflammatory cytokines released mainly by the immune cells. In this comprehensive review we first explain antitumor immunity, then continue with how the tumor suppresses and evades the immune response, and next, outline the role of inflammation in breast tumor initiation and progression. We finally review the current immunotherapeutic and immunoengineering strategies against breast cancer as a promising emerging approach for the discovery and design of immune system-based strategies for breast cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Apostolopoulos, V., V. Karanikas, J. S. Haurum, and I. F. McKenzie. Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J. Immunol. 159(11):5211–5218, 1997.

    Google Scholar 

  2. Arias-Pulido, H., A. Cimino-Mathews, N. Chaher, et al. The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome. Breast Cancer Res. Treat. 171(2):273–282, 2018. https://doi.org/10.1007/s10549-018-4834-7.

    Article  Google Scholar 

  3. Azuma, T., T. Takahashi, A. Kunisato, T. Kitamura, and H. Hirai. Human CD4+ CD25+ regulatory T cells suppress NKT cell functions. Cancer Res. 63(15):4516–4520, 2003.

    Google Scholar 

  4. Baharlou, R., M. R. Atashzar, A. A. Vasmehjani, et al. Reduced levels of T-helper 17-associated cytokines in the serum of patients with breast cancer: indicators for following the course of disease. Cent. Eur. J. Immunol. 41(1):78–85, 2016. https://doi.org/10.5114/ceji.2016.58819.

    Article  Google Scholar 

  5. Bahcecioglu, G., G. Basara, B. W. Ellis, X. Ren, and P. Zorlutuna. Breast cancer models: engineering the tumor microenvironment. Acta Biomater. 106:1–21, 2020. https://doi.org/10.1016/j.actbio.2020.02.006.

    Article  Google Scholar 

  6. Bahcecioglu, G., X. Yue, E. Howe, I. Guldner, M. S. Stack, H. Nakshatri, S. Zhang, and P. Zorlutuna. Aged breast extracellular matrix drives mammary epithelial cells to an invasive and cancer-like phenotype. BioRxiv 2020. https://doi.org/10.1101/2020.09.30.320960.

    Article  Google Scholar 

  7. Bates, G. J., S. B. Fox, C. Han, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24(34):5373–5380, 2006. https://doi.org/10.1200/JCO.2006.05.9584.

    Article  Google Scholar 

  8. Ben-Eliyahu, S., G. G. Page, R. Yirmiya, and G. Shakhar. Evidence that stress and surgical interventions promote tumor development by suppressing natural killer cell activity. Int. J. Cancer 80(6):880–888, 1999. https://doi.org/10.1002/(sici)1097-0215(19990315)80:6<880::aid-ijc14>3.0.co;2-y.

    Article  Google Scholar 

  9. Bergenfelz, C., A.-M. Larsson, K. von Stedingk, et al. Systemic monocytic-mdscs are generated from monocytes and correlate with disease progression in breast cancer patients. PLoS ONE. 10(5):2015. https://doi.org/10.1371/journal.pone.0127028.

    Article  Google Scholar 

  10. Biswas, S. K., and A. Mantovani. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11(10):889–896, 2010. https://doi.org/10.1038/ni.1937.

    Article  Google Scholar 

  11. Böttcher, J. P., E. Bonavita, P. Chakravarty, et al. Nk cells stimulate recruitment of cdc1 into the tumor microenvironment promoting cancer immune control. Cell 172(5):1022–1037.e14, 2018. https://doi.org/10.1016/j.cell.2018.01.004.

    Article  Google Scholar 

  12. Brocke-Heidrich, K., A. K. Kretzschmar, G. Pfeifer, et al. Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation. Blood. 103(1):242–251, 2004. https://doi.org/10.1182/blood-2003-04-1048.

    Article  Google Scholar 

  13. Casey, J., X. Yue, T. D. Nguyen, et al. 3D hydrogel-based microwell arrays as a tumor microenvironment model to study breast cancer growth. Biomed. Mater. 12(2):2017. https://doi.org/10.1088/1748-605X/aa5d5c.

    Article  Google Scholar 

  14. Castro, F., A. P. Cardoso, R. M. Gonçalves, K. Serre, and M. J. Oliveira. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol. 9:847, 2018. https://doi.org/10.3389/fimmu.2018.00847.

    Article  Google Scholar 

  15. Chaffer, C. L., and R. A. Weinberg. A perspective on cancer cell metastasis. Science 331(6024):1559–1564, 2011. https://doi.org/10.1126/science.1203543.

    Article  Google Scholar 

  16. Chen, W. Dendritic cells and cd4+cd25+ t regulatory cells: crosstalk between two professionals in immunity versus tolerance. Front. Biosci. 11(1):1360, 2006. https://doi.org/10.2741/1889.

    Article  Google Scholar 

  17. Chen, W., Y. Qin, and S. Liu. Cytokines, breast cancer stem cells (BCSCS) and chemoresistance. Clin. Transl. Med. 7(1):6, 2018. https://doi.org/10.1186/s40169-018-0205-6.

    Article  Google Scholar 

  18. Chin, Y., J. Janseens, J. Vandepitte, J. Vandenbrande, L. Opdebeek, and J. Raus. Phenotypic analysis of tumor-infiltrating lymphocytes from human breast cancer. Anticancer Res. 12(5):1463–1466, 1992.

    Google Scholar 

  19. Cole, S., A. Montero, E. Garret, M. G. Onicescu, T. Vandenberg, S. Hutchens, and C. Diaz-Montero. Elevated circulating myeloid derived suppressor cells (MDSC) are associated with inferior overall survival (OS) and correlate with circulating tumor cells (CTC) in patients with metastatic breast cancer. Cancer Res. 69(24 Suppl):4135, 2009. https://doi.org/10.1158/0008-5472.sabcs-09-4135.

    Article  Google Scholar 

  20. Collison, L. W., M. R. Pillai, V. Chaturvedi, and D. A. A. Vignali. Regulatory t cell suppression is potentiated by target t cells in a cell contact, il-35- and il-10-dependent manner. J. Immunol. 182(10):6121–6128, 2009. https://doi.org/10.4049/jimmunol.0803646.

    Article  Google Scholar 

  21. Columba-Cabezas, S., B. Serafini, E. Ambrosini, et al. Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J. Neuroimmunol. 130(1–2):10–21, 2002. https://doi.org/10.1016/S0165-5728(02)00170-4.

    Article  Google Scholar 

  22. Curiel, T. J., G. Coukos, L. Zou, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10(9):942–949, 2004. https://doi.org/10.1038/nm1093.

    Article  Google Scholar 

  23. de la Cruz-Merino, L., A. Barco-Sánchez, F. Henao Carrasco, et al. New insights into the role of the immune microenvironment in breast carcinoma. Clin. Dev. Immunol. 2013:1–11, 2013. https://doi.org/10.1155/2013/785317.

    Article  Google Scholar 

  24. de la Cruz-Merino, L., F. Henao-Carrasco, T. García-Manrique, P. M. Fernández-Salguero, and M. de Villena. Role of transforming growth factor beta in cancer microenvironment. Clin. Transl. Oncol. 11(11):715–720, 2009. https://doi.org/10.1007/s12094-009-0433-8.

    Article  Google Scholar 

  25. DeNardo, D. G., and L. M. Coussens. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9(4):212, 2007. https://doi.org/10.1186/bcr1746.

    Article  Google Scholar 

  26. Dias, S., R. Boyd, and F. Balkwill. IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int. J. Cancer. 78(3):361–365, 1998.

    Article  Google Scholar 

  27. Dunn, G. P., L. J. Old, and R. D. Schreiber. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21(2):137–148, 2004. https://doi.org/10.1016/j.immuni.2004.07.017.

    Article  Google Scholar 

  28. Ellner, J. J. Suppressor cells of man. Clin. Immunol. Rev. 1(1):119–214, 1981.

    Google Scholar 

  29. Emens, L. A. Breast cancer immunobiology driving immunotherapy: vaccines and immune checkpoint blockade. Expert Rev. Anticancer Ther. 12(12):1597–1611, 2012. https://doi.org/10.1586/era.12.147.

    Article  Google Scholar 

  30. Emens, L. A. Breast cancer immunotherapy: facts and hopes. Clin. Cancer Res. 24(3):511–520, 2018. https://doi.org/10.1158/1078-0432.CCR-16-3001.

    Article  Google Scholar 

  31. Escobar, G., D. Moi, A. Ranghetti, et al. Genetic engineering of hematopoiesis for targeted ifn- delivery inhibits breast cancer progression. Sci. Transl. Med. 6(217):217ra3, 2014. https://doi.org/10.1126/scitranslmed.3006353.

    Article  Google Scholar 

  32. Foussat, A., F. Cottrez, V. Brun, N. Fournier, J.-P. Breittmayer, and H. Groux. A comparative study between t regulatory type 1 and cd4+ cd25+ t cells in the control of inflammation. J. Immunol. 171(10):5018–5026, 2003. https://doi.org/10.4049/jimmunol.171.10.5018.

    Article  Google Scholar 

  33. Fu, G., L. Miao, M. Wang, et al. The postoperative immunosuppressive phenotypes of peripheral t helper cells are associated with poor prognosis of breast cancer patients. Immunol. Investig. 46(7):647–662, 2017. https://doi.org/10.1080/08820139.2017.1360337.

    Article  Google Scholar 

  34. Fu, G., L. Miao, M. Wang, et al. The postoperative immunosuppressive phenotypes of peripheral T helper cells are associated with poor prognosis of breast cancer patients. Immunol. Invest. 46(7):647–662, 2017. https://doi.org/10.1080/08820139.2017.1360337.

    Article  Google Scholar 

  35. Gangemi, S., P. Minciullo, B. Adamo, et al. Clinical significance of circulating interleukin-23 as a prognostic factor in breast cancer patients. J. Cell Biochem. 113(6):2122–2125, 2012. https://doi.org/10.1002/jcb.24083.

    Article  Google Scholar 

  36. Garaud, S., L. Buisseret, C. Solinas, et al. Tumor-infiltrating B cells signal functional humoral immune responses in breast cancer. JCI Insight. 4(18):2019. https://doi.org/10.1172/jci.insight.129641.

    Article  Google Scholar 

  37. Gatti-Mays, M. E., J. M. Balko, S. R. Gameiro, et al. If we build it they will come: targeting the immune response to breast cancer. NPJ Breast Cancer 5:37, 2019. https://doi.org/10.1038/s41523-019-0133-7.

    Article  Google Scholar 

  38. Ghebeh, H., E. Barhoush, A. Tulbah, N. Elkum, T. Al-Tweigeri, and S. Dermime. FOXP3+ Tregs and B7-H1+/PD-1+T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer. 8(1):57, 2008. https://doi.org/10.1186/1471-2407-8-57.

    Article  Google Scholar 

  39. Goldberg, J. E., and K. L. Schwertfeger. Proinflammatory cytokines in breast cancer: mechanisms of action and potential targets for therapeutics. Curr. Drug Targets. 11(9):1133–1146, 2010. https://doi.org/10.2174/138945010792006799.

    Article  Google Scholar 

  40. Goodwin, J. S., and J. Ceuppens. Regulation of the immune response by prostaglandins. J. Clin. Immunol. 3(4):295–315, 1983. https://doi.org/10.1007/BF00915791.

    Article  Google Scholar 

  41. Gritzapis, A. D., A. Mamalaki, A. Kretsovali, et al. Redirecting mouse T hybridoma against human breast and ovarian carcinomas: in vivo activity against HER-2/neu expressing cancer cells. Br. J. Cancer. 88(8):1292–1300, 2003. https://doi.org/10.1038/sj.bjc.6600888.

    Article  Google Scholar 

  42. Gruber, I., N. Landenberger, A. Staebler, et al. Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Res. 33(5):2233–2238, 2013.

    Google Scholar 

  43. Gu-Trantien, C., S. Loi, S. Garaud, et al. CD4+ follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123(7):2873–2892, 2013. https://doi.org/10.1172/JCI67428.

    Article  Google Scholar 

  44. Hassin, D., O. G. Garber, A. Meiraz, Y. S. Schiffenbauer, and G. Berke. Cytotoxic T lymphocyte perforin and Fas ligand working in concert even when Fas ligand lytic action is still not detectable. Immunology. 133(2):190–196, 2011. https://doi.org/10.1111/j.1365-2567.2011.03426.x.

    Article  Google Scholar 

  45. Hemdan, N. Y. Anti-cancer versus cancer-promoting effects of the interleukin-17-producing T helper cells. Immunol. Lett. 149(1–2):123–133, 2013. https://doi.org/10.1016/j.imlet.2012.11.002.

    Article  Google Scholar 

  46. Holen, I., D. V. Lefley, S. E. Francis, et al. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget. 7(46):75571–75584, 2016. https://doi.org/10.18632/oncotarget.12289.

    Article  Google Scholar 

  47. Hollern, D. P., N. Xu, A. Thennavan, et al. B cells and T follicular helper cells mediate response to checkpoint inhibitors in high mutation burden mouse models of breast cancer. Cell 179(5):1191–1206.e21, 2019. https://doi.org/10.1016/j.cell.2019.10.028.

    Article  Google Scholar 

  48. Holzapfel, B. M., F. Wagner, L. Thibaudeau, J. P. Levesque, and D. W. Hutmacher. Concise review: humanized models of tumor immunology in the 21st century: convergence of cancer research and tissue engineering. Stem Cells 33(6):1696–1704, 2015. https://doi.org/10.1002/stem.1978.

    Article  Google Scholar 

  49. Iyengar, N. M., X. K. Zhou, A. Gucalp, et al. Systemic correlates of white adipose tissue inflammation in early-stage breast cancer. Clin. Cancer Res. 22(9):2283–2289, 2016. https://doi.org/10.1158/1078-0432.CCR-15-2239.

    Article  Google Scholar 

  50. Kaklamani, V., and R. M. O’Regan. New targeted therapies in breast cancer. Semin. Oncol. 31:20–25, 2004. https://doi.org/10.1053/j.seminoncol.2004.02.018.

    Article  Google Scholar 

  51. Kan, N. Analysis of 5-year survival among breast cancer patients with malignant pleural effusion receiving intrapleural OK-432 followed by adoptive transfer with cultured effusion lymphocytes. Gan To Kagaku Ryoho. 30(11):1559–1561, 2003.

    Google Scholar 

  52. Katanov, C., S. Lerrer, Y. Liubomirski, et al. Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-α and the NF-κB pathway. Stem Cell Res. Ther. 6(1):87, 2015. https://doi.org/10.1186/s13287-015-0080-7.

    Article  Google Scholar 

  53. Khramtsova, G., C. Liao, and A. Khramtsov et al. The m2/alternatively activated macrophage phenotype correlates with aggressive histopathologic features and poor clinical outcome in early stage breast cancer. In: Poster Discussion Abstracts. American Association for Cancer Research; 2009, pp. 107–107. https://doi.org/10.1158/0008-5472.SABCS-09-107.

  54. Knutson, K. L., Y. Dang, H. Lu, et al. IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J. Immunol. 177(1):84–91, 2006. https://doi.org/10.4049/jimmunol.177.1.84.

    Article  Google Scholar 

  55. Kohrt, H. E., N. Nouri, K. Nowels, D. Johnson, S. Holmes, and P. P. Lee. Profile of immune cells in axillary lymph nodes predicts disease-free survival in breast cancer. PLoS Med. 2(9):2005. https://doi.org/10.1371/journal.pmed.0020284.

    Article  Google Scholar 

  56. Kontani, K., O. Taguchi, Y. Ozaki, et al. Dendritic cell vaccine immunotherapy of cancer targeting MUC1 mucin. Int. J. Mol. Med. 2003. https://doi.org/10.3892/ijmm.12.4.493.

    Article  Google Scholar 

  57. Korkaya, H., G. I. Kim, A. Davis, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol. Cell. 47(4):570–584, 2012. https://doi.org/10.1016/j.molcel.2012.06.014.

    Article  Google Scholar 

  58. Koru-Sengul, T., A. M. Santander, F. Miao, et al. Breast cancers from black women exhibit higher numbers of immunosuppressive macrophages with proliferative activity and of crown-like structures associated with lower survival compared to non-black Latinas and Caucasians. Breast Cancer Res. Treat. 158(1):113–126, 2016. https://doi.org/10.1007/s10549-016-3847-3.

    Article  Google Scholar 

  59. Leber, T. M., and F. R. Balkwill. Regulation of monocyte MMP-9 production by TNF-alpha and a tumour-derived soluble factor (MMPSF). Br. J. Cancer 78(6):724–732, 1998. https://doi.org/10.1038/bjc.1998.568.

    Article  Google Scholar 

  60. Lee-Chang, C., M. Bodogai, A. Martin-Montalvo, et al. Inhibition of breast cancer metastasis by resveratrol-mediated inactivation of tumor-evoked regulatory B cells. J Immunol. 191(8):4141–4151, 2013. https://doi.org/10.4049/jimmunol.1300606.

    Article  Google Scholar 

  61. Leek, R. D., and A. L. Harris. Tumor-associated macrophages in breast cancer. J. Mammary Gland Biol. Neoplasia. 7(2):177–189, 2002. https://doi.org/10.1023/a:1020304003704.

    Article  Google Scholar 

  62. Leu, C. M., F. H. Wong, C. Chang, S. F. Huang, and C. P. Hu. Interleukin-6 acts as an antiapoptotic factor in human esophageal carcinoma cells through the activation of both STAT3 and mitogen-activated protein kinase pathways. Oncogene. 22(49):7809–7818, 2003. https://doi.org/10.1038/sj.onc.1207084.

    Article  Google Scholar 

  63. Leyland-Jones, B. Trastuzumab: hopes and realities. Lancet Oncol. 3(3):137–144, 2002. https://doi.org/10.1016/S1470-2045(02)00676-9.

    Article  Google Scholar 

  64. Li, K., L. Wei, Y. Huang, et al. Leptin promotes breast cancer cell migration and invasion via IL-18 expression and secretion. Int. J. Oncol. 48(6):2479–2487, 2016. https://doi.org/10.3892/ijo.2016.3483.

    Article  Google Scholar 

  65. Lim, H. W., P. Hillsamer, A. H. Banham, and C. H. Kim. Cutting edge: direct suppression of b cells by cd4+ cd25+ regulatory t cells. J. Immunol. 175(7):4180–4183, 2005. https://doi.org/10.4049/jimmunol.175.7.4180.

    Article  Google Scholar 

  66. Lim, W. A., and C. H. June. The principles of engineering immune cells to treat cancer. Cell 168(4):724–740, 2017. https://doi.org/10.1016/j.cell.2017.01.016.

    Article  Google Scholar 

  67. Lin, E. Y., J.-F. Li, L. Gnatovskiy, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66(23):11238–11246, 2006. https://doi.org/10.1158/0008-5472.CAN-06-1278.

    Article  Google Scholar 

  68. Lin, E. Y., A. V. Nguyen, R. G. Russell, and J. W. Pollard. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193(6):727–740, 2001. https://doi.org/10.1084/jem.193.6.727.

    Article  Google Scholar 

  69. Linde, N., M. Casanova-Acebes, M. S. Sosa, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 9(1):21, 2018. https://doi.org/10.1038/s41467-017-02481-5.

    Article  Google Scholar 

  70. Liu, F., R. Lang, J. Zhao, et al. CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res. Treat. 130(2):645–655, 2011. https://doi.org/10.1007/s10549-011-1647-3.

    Article  Google Scholar 

  71. Liyanage, U. K., T. T. Moore, H. G. Joo, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169(5):2756–2761, 2002. https://doi.org/10.4049/jimmunol.169.5.2756.

    Article  Google Scholar 

  72. Lu, D., X. Zhou, L. Yao, C. Liu, F. Jin, and Y. Wu. Clinical implications of the interleukin 27 serum level in breast cancer. J. Investig. Med. 62(3):627–631, 2014. https://doi.org/10.2310/JIM.0000000000000046.

    Article  Google Scholar 

  73. Maglione, J. E., D. Moghanaki, L. J. Young, et al. Transgenic Polyoma middle-T mice model premalignant mammary disease. Cancer Res. 61(22):8298–8305, 2001.

    Google Scholar 

  74. Mamessier, E., A. Sylvain, M.-L. Thibult, et al. Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J. Clin. Invest. 121(9):3609–3622, 2011. https://doi.org/10.1172/JCI45816.

    Article  Google Scholar 

  75. Markowitz, J., R. Wesolowski, T. Papenfuss, T. R. Brooks, and W. E. Carson. Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res. Treat. 140(1):13–21, 2013. https://doi.org/10.1007/s10549-013-2618-7.

    Article  Google Scholar 

  76. Melief, C. J., and W. M. Kast. Lessons from T cell responses to virus induced tumours for cancer eradication in general. Cancer Surv. 13:81–99, 1992.

    Google Scholar 

  77. Merlo, A., P. Casalini, M. L. Carcangiu, et al. Foxp3 expression and overall survival in breast cancer. J. Clin. Oncol. 27(11):1746–1752, 2009. https://doi.org/10.1200/JCO.2008.17.9036.

    Article  Google Scholar 

  78. Moon, J. J., B. Huang, and D. J. Irvine. Engineering nano- and microparticles to tune immunity. Adv. Mater. 24(28):3724–3746, 2012. https://doi.org/10.1002/adma.201200446.

    Article  Google Scholar 

  79. Namjoshi, P., L. Showalter, B. J. Czerniecki, and G. K. Koski. T-helper 1-type cytokines induce apoptosis and loss of HER-family oncodriver expression in murine and human breast cancer cells. Oncotarget. 10(57):6006–6020, 2019. https://doi.org/10.18632/oncotarget.10298.

    Article  Google Scholar 

  80. Nazir, S. U., R. Kumar, A. Singh, et al. Breast cancer invasion and progression by MMP-9 through Ets-1 transcription factor. Gene 711:143952, 2019. https://doi.org/10.1016/j.gene.2019.143952.

    Article  Google Scholar 

  81. Olkhanud, P. B., B. Damdinsuren, M. Bodogai, et al. Tumor-evoked regulatory b cells promote breast cancer metastasis by converting resting cd4+ t cells to t-regulatory cells. Cancer Res. 71(10):3505–3515, 2011. https://doi.org/10.1158/0008-5472.CAN-10-4316.

    Article  Google Scholar 

  82. Park, I. H., H. N. Yang, K. J. Lee, et al. Tumor-derived IL-18 induces PD-1 expression on immunosuppressive NK cells in triple-negative breast cancer. Oncotarget 8(20):32722–32730, 2017. https://doi.org/10.18632/oncotarget.16281.

    Article  Google Scholar 

  83. Parker, D. C. T cell-dependent b cell activation. Annu. Rev. Immunol. 11(1):331–360, 1993. https://doi.org/10.1146/annurev.iy.11.040193.001555.

    Article  Google Scholar 

  84. Peng, G. L., L. Li, Y. W. Guo, et al. CD8+ cytotoxic and FoxP3+ regulatory T lymphocytes serve as prognostic factors in breast cancer. Am. J. Transl. Res. 11(8):5039–5053, 2019.

    Google Scholar 

  85. Peoples, G. E., P. S. Goedegebuure, R. Smith, D. C. Linehan, I. Yoshino, and T. J. Eberlein. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc. Natl. Acad. Sci. USA 92(2):432–436, 1995. https://doi.org/10.1073/pnas.92.2.432.

    Article  Google Scholar 

  86. Polat, K., S. Sahan, H. Kodaz, and S. Günes. A new classification method for breast cancer diagnosis: feature selection artificial immune recognition system (FS-AIRS). In: Advances in Natural Computation, ICNC 2005, Vol. 3611, edited by L. Wang, K. Chen, and Y. S. Ong. Lecture Notes in Computer Science, Berlin: Springer, 2005. https://doi.org/10.1007/11539117_117.

    Chapter  Google Scholar 

  87. Pross, H. F., E. Sterns, and D. R. Macgillis. Natural killer cell activity in women at “high risk” for breast cancer, with and without benign breast syndrome. Int. J. Cancer 34(3):303–308, 1984. https://doi.org/10.1002/ijc.2910340303.

    Article  Google Scholar 

  88. Rezvani, K., R. Rouce, E. Liu, and E. Shpall. Engineering natural killer cells for cancer immunotherapy. Mol. Ther. 25(8):1769–1781, 2017. https://doi.org/10.1016/j.ymthe.2017.06.012.

    Article  Google Scholar 

  89. Ridgway, D. The first 1000 dendritic cell vaccinees. Cancer Investig. 21(6):873–886, 2003. https://doi.org/10.1081/CNV-120025091.

    Article  Google Scholar 

  90. Romagnani, C., M. Della Chiesa, S. Kohler, et al. Activation of human NK cells by plasmacytoid dendritic cells and its modulation by CD4+ T helper cells and CD4+ CD25hi T regulatory cells. Eur. J. Immunol. 35(8):2452–2458, 2005. https://doi.org/10.1002/eji.200526069.

    Article  Google Scholar 

  91. Sachs, G. Lytic effector cell activity and major depressive disorder in patients with breast cancer: a prospective study. J. Neuroimmunol. 59(1–2):83–89, 1995. https://doi.org/10.1016/0165-5728(95)00029-2.

    Article  Google Scholar 

  92. Şahan, S., K. Polat, H. Kodaz, and S. Güneş. A new hybrid method based on fuzzy-artificial immune system and -nn algorithm for breast cancer diagnosis. Comput. Biol. Med. 37(3):415–423, 2007. https://doi.org/10.1016/j.compbiomed.2006.05.003.

    Article  Google Scholar 

  93. Sawaki, M., Y. Ito, K. Tada, et al. Efficacy and safety of trastuzumab as a single agent in heavily pretreated patients with HER-2/neu-overexpressing metastatic breast cancer. Tumori. 90(1):40–43, 2004.

    Article  Google Scholar 

  94. Schaft, N., R. A. Willemsen, J. de Vries, et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J. Immunol. 170(4):2186–2194, 2003. https://doi.org/10.4049/jimmunol.170.4.2186.

    Article  Google Scholar 

  95. Scholl, S., P. Squiban, N. Bizouarne, et al. Metastatic breast tumour regression following treatment by a gene-modified vaccinia virus expressing muc1 and il-2. J. Biomed. Biotechnol. 2003(3):194–201, 2003. https://doi.org/10.1155/S111072430320704X.

    Article  Google Scholar 

  96. Schwartz, M., Y. Zhang, and J. D. Rosenblatt. B cell regulation of the anti-tumor response and role in carcinogenesis. J. ImmunoTherapy Cancer 2016. https://doi.org/10.1186/s40425-016-0145-x.

    Article  Google Scholar 

  97. Schwartzentruber, D. J., D. Solomon, S. A. Rosenberg, and S. L. Topalian. Characterization of lymphocytes infiltrating human breast cancer, specific immune reactivity detected by measuring cytokine secretion. J. Immunother. 12(1):1, 1992. https://doi.org/10.1097/00002371-199207000-00001.

    Article  Google Scholar 

  98. Sethi, G., B. Sung, and B. B. Aggarwal. TNF: a master switch for inflammation to cancer. Front. Biosci. 13:5094–5107, 2008. https://doi.org/10.2741/3066.

    Article  Google Scholar 

  99. Shafiee, A., J. A. McGovern, C. A. Lahr, et al. Immune system augmentation via humanization using stem/progenitor cells and bioengineering in a breast cancer model study. Int. J. Cancer 143(6):1470–1482, 2018. https://doi.org/10.1002/ijc.31528.

    Article  Google Scholar 

  100. Shak, S. Overview of the trastuzumab (Herceptin) anti-HER2 monoclonal antibody clinical program in HER2-overexpressing metastatic breast cancer. Herceptin Multinational Investigator Study Group. Semin. Oncol. 26(4 Suppl 12):71–77, 1999.

    Google Scholar 

  101. Shapiro, H., T. Pecht, R. Shaco-Levy, et al. Adipose tissue foam cells are present in human obesity. J. Clin. Endocrinol. Metab. 98(3):1173–1181, 2013. https://doi.org/10.1210/jc.2012-2745.

    Article  Google Scholar 

  102. Siegel, R. L., K. D. Miller, and A. Jemal. Cancer statistics, 2020. CA A Cancer J. Clin. 70:7–30, 2020. https://doi.org/10.3322/caac.21590.

    Article  Google Scholar 

  103. Standish, L. J., E. S. Sweet, J. Novack, et al. Breast cancer and the immune system. J. Soc. Integr. Oncol. 6(4):158–168, 2008.

    Google Scholar 

  104. Stanton, S. E., and M. L. Disis. Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J. Immunother. Cancer. 4(1):59, 2016. https://doi.org/10.1186/s40425-016-0165-6.

    Article  Google Scholar 

  105. Su, S., Q. Liu, J. Chen, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25(5):605–620, 2014. https://doi.org/10.1016/j.ccr.2014.03.021.

    Article  Google Scholar 

  106. Tecchio, C., A. Micheletti, and M. A. Cassatella. Neutrophil-derived cytokines: facts beyond expression. Front. Immunol. 5:508, 2014. https://doi.org/10.3389/fimmu.2014.00508.

    Article  Google Scholar 

  107. Todorović-Raković, N., and J. Milovanović. Interleukin-8 in breast cancer progression. J. Interferon Cytokine Res. 33(10):563–570, 2013. https://doi.org/10.1089/jir.2013.0023.

    Article  Google Scholar 

  108. Trzonkowski, P., E. Szmit, J. Myśliwska, A. Dobyszuk, and A. Myśliwski. CD4+CD25+ T regulatory cells inhibit cytotoxic activity of T CD8+ and NK lymphocytes in the direct cell-to-cell interaction. Clin. Immunol. 112(3):258–267, 2004. https://doi.org/10.1016/j.clim.2004.04.003.

    Article  Google Scholar 

  109. Vignali, D. A. A., L. W. Collison, and C. J. Workman. How regulatory T cells work. Nat. Rev. Immunol. 8(7):523–532, 2008. https://doi.org/10.1038/nri2343.

    Article  Google Scholar 

  110. Wang, J., D. Cai, B. Ma, G. Wu, and J. Wu. Skewing the balance of regulatory T-cells and T-helper 17 cells in breast cancer patients. J. Int. Med. Res. 39(3):691–701, 2011. https://doi.org/10.1177/147323001103900301.

    Article  Google Scholar 

  111. Wang, R. F., S. L. Johnston, G. Zeng, S. L. Topalian, D. J. Schwartzentruber, and S. A. Rosenberg. A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames. J. Immunol. 161(7):3598–3606, 1998.

    Google Scholar 

  112. Weigelt, B., J. L. Peterse, and L. J. van’t Veer. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5(8):591–602, 2005. https://doi.org/10.1038/nrc1670.

    Article  Google Scholar 

  113. Wong, P. Y., E. D. Staren, N. Tereshkova, and D. P. Braun. Functional analysis of tumor-infiltrating leukocytes in breast cancer patients. J. Surg. Res. 76(1):95–103, 1998. https://doi.org/10.1006/jsre.1998.5301.

    Article  Google Scholar 

  114. Yang, J., G. Bahcecioglu, and P. Zorlutuna. The extracellular matrix and vesicles modulate the breast tumor microenvironment. Bioengineering. 7(4):124, 2020.

    Article  Google Scholar 

  115. Yang, X., C. Hu, F. Tong, R. Liu, Y. Zhou, L. Qin, L. Ouyang, and H. Gao. Tumor microenvironment-responsive dual drug dimer-loaded PEGylated bilirubin nanoparticles for improved drug delivery and enhanced immune-chemotherapy of breast cancer. Adv. Funct. Mater. 29:1901896, 2019. https://doi.org/10.1002/adfm.201901896.

    Article  Google Scholar 

  116. Yeong, J., J. C. T. Lim, B. Lee, et al. High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front. Immunol. 9:1209, 2018. https://doi.org/10.3389/fimmu.2018.01209.

    Article  Google Scholar 

  117. Yue, X., T. D. Nguyen, V. Zellmer, S. Zhang, and P. Zorlutuna. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Biomaterials. 170:37–48, 2018. https://doi.org/10.1016/j.biomaterials.2018.04.001.

    Article  Google Scholar 

  118. Zhang, J. M., and J. An. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 45(2):27–37, 2007. https://doi.org/10.1097/AIA.0b013e318034194e.

    Article  Google Scholar 

  119. Zhao, Z., A. Ukidve, V. Krishnan, et al. Systemic tumour suppression via the preferential accumulation of erythrocyte-anchored chemokine-encapsulating nanoparticles in lung metastases. Nat. Biomed. Eng. 2020. https://doi.org/10.1038/s41551-020-00644-2.

    Article  Google Scholar 

  120. Zhou, J., and Y. Zhong. Breast cancer immunotherapy. Cell Mol. Immunol. 1(4):247–255, 2004.

    Google Scholar 

  121. Zhu, S., J. Lin, G. Qiao, X. Wang, and Y. Xu. Tim-3 identifies exhausted follicular helper T cells in breast cancer patients. Immunobiology 221(9):986–993, 2016. https://doi.org/10.1016/j.imbio.2016.04.005.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by NIH Award Number 5R01EB027660-02 and Walther Cancer Foundation, Harper Cancer Research Institute Cancer Cure Ventures Award number 0184.01.

Conflict of interest

Jensen N. Amens, Gökhan Bahçecioglu, and Pinar Zorlutuna declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Zorlutuna.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amens, J.N., Bahçecioglu, G. & Zorlutuna, P. Immune System Effects on Breast Cancer. Cel. Mol. Bioeng. 14, 279–292 (2021). https://doi.org/10.1007/s12195-021-00679-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-021-00679-8

Keywords

Navigation