Skip to main content
Log in

Brief history of the pion–nucleon sigma term

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The pion–nucleon sigma term is a quantity involved in many important aspects of particle and nuclear physics. In this review, I show its origin and how it is connected to important questions as the origin of mass of the ordinary matter, studies of dark matter detection and nucleosynthesis. I mention the most common methods used to obtain the sigma term, and comment on the extracted values. As it is shown, the accepted value of the sigma term has been moving from relatively low (\(\sim 40\) MeV) to larger ones (\(\sim 60\) MeV) until today, where this controversy still persist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. In the previous equation the \(2 m_N\) in the denominator appears because I used the normalization \(\langle N(p')| N(p)\rangle = (2\pi )^3 2E\, \delta ({\mathbf {p}\,' - \mathbf {p}})\), what will be customary for the rest of the article. Notice also that \(\hat{m}\) arises because we are working in the SU(2) symmetric limit.

  2. Note that the \(1/2m_N\) factor comes from the normalization of the nucleon states.

  3. The other matrix element, \(\langle N(p) | m_s\bar{s}s | N(p)\rangle \) can be estimated with the help of \(\sigma _{\pi N}\), as is shown later.

  4. Only in a relativistic formulation of chiral EFT with baryons the analytic structure is completely preserved. However, since the problematic parts in non-relativistic approaches are the Born terms, and they are subtracted in the Cheng-Dashen theorem, one can still apply it in these versions of the EFT.

  5. The last equality is valid only in a two-flavor approach.

  6. In this section, t refers always to time.

  7. The author provides the value of \(\varSigma \). This number considers the reduction by \(\varDelta _\sigma \).

  8. Notice that the approach of [43] is much closer to [42] than to [30].

References

  1. S.L. Adler, Phys. Rev. 137, B1022–B1033 (1965)

    Article  ADS  Google Scholar 

  2. S.L. Adler, Phys. Rev. 139, B1638–B1643 (1965)

    Article  ADS  Google Scholar 

  3. S. Weinberg, Phys. Rev. Lett. 17, 616–621 (1966)

    Article  ADS  Google Scholar 

  4. M. Gell-Mann, R.J. Oakes, B. Renner, Phys. Rev. 175, 2195–2199 (1968)

    Article  ADS  Google Scholar 

  5. E. Reya, Rev. Mod. Phys. 46, 545–580 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Fubini, G. Furlan, Ann. Phys. 48, 322–365 (1968)

    Article  ADS  Google Scholar 

  7. T.P. Cheng, R.F. Dashen, Phys. Rev. Lett. 26, 594 (1971)

    Article  ADS  Google Scholar 

  8. L.S. Brown, W.J. Pardee, R.D. Peccei, Phys. Rev. D 4, 2801–2810 (1971)

    Article  ADS  Google Scholar 

  9. V. Bernard, N. Kaiser, U.G. Meissner, Phys. Lett. B 389, 144–148 (1996)

    Article  ADS  Google Scholar 

  10. H. Pagels, W.J. Pardee, Phys. Rev. D 4, 3335–3337 (1971)

    Article  ADS  Google Scholar 

  11. R.J. Crewther, Phys. Rev. Lett. 28, 1421 (1972)

    Article  ADS  Google Scholar 

  12. M.S. Chanowitz, J.R. Ellis, Phys. Lett. B 40, 397–400 (1972)

    Article  ADS  Google Scholar 

  13. J.C. Collins, A. Duncan, S.D. Joglekar, Phys. Rev. D 16, 438–449 (1977)

    Article  ADS  Google Scholar 

  14. M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Lett. B 78, 443–446 (1978)

    Article  ADS  Google Scholar 

  15. R.J. Hill, M.P. Solon, Phys. Lett. B 707, 539–545 (2012)

    Article  ADS  Google Scholar 

  16. A. Crivellin, M. Hoferichter, M. Procura, Phys. Rev. D 89, 054021 (2014)

    Article  ADS  Google Scholar 

  17. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Astropart. Phys. 18, 205–211 (2002)

    Article  ADS  Google Scholar 

  18. A. Bottino, F. Donato, N. Fornengo, S. Scopel, Phys. Rev. D 78, 083520 (2008)

    Article  ADS  Google Scholar 

  19. J.R. Ellis, K.A. Olive, C. Savage, Phys. Rev. D 77, 065026 (2008)

    Article  ADS  Google Scholar 

  20. S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du, N. Klein, B. n. Lu, U. G. Meißner, E. Epelbaum and H. Krebs, et al. Phys. Rev. Lett. 117, no.13, 132501 (2016)

  21. J.C. Berengut, E. Epelbaum, V.V. Flambaum, C. Hanhart, U.G. Meissner, J. Nebreda, J.R. Pelaez, Phys. Rev. D 87(8), 085018 (2013)

    Article  ADS  Google Scholar 

  22. W. Weise, Prog. Part. Nucl. Phys. 67, 299–311 (2012)

    Article  ADS  Google Scholar 

  23. N. Kaiser, P. de Homont, W. Weise, Phys. Rev. C 77, 025204 (2008)

    Article  ADS  Google Scholar 

  24. J.A. Oller, Phys. Rev. C 65, 025204 (2002)

    Article  ADS  Google Scholar 

  25. U.G. Meissner, J.A. Oller, A. Wirzba, Ann. Phys. 297, 27–66 (2002)

    Article  ADS  Google Scholar 

  26. J.A. Oller, A. Lacour, U.G. Meissner, J. Phys. G 37, 015106 (2010)

    Article  ADS  Google Scholar 

  27. A. Lacour, J.A. Oller, U.G. Meissner, J. Phys. G 37, 125002 (2010)

    Article  ADS  Google Scholar 

  28. A. Lacour, J.A. Oller, U.G. Meissner, Ann. Phys. 326, 241–306 (2011)

    Article  ADS  Google Scholar 

  29. J.A. Oller, J. Phys. G 46(7), 073001 (2019)

    Article  ADS  Google Scholar 

  30. J.M. Alarcon, J. Martin Camalich, J.A. Oller, Phys. Rev. D 85, 051503 (2012)

    Article  ADS  Google Scholar 

  31. J.M. Alarcon, L.S. Geng, J. Martin Camalich, J.A. Oller, Phys. Lett. B 730, 342–346 (2014)

    Article  ADS  Google Scholar 

  32. I.P. Fernando, J.M. Alarcon, J.L. Goity, Phys. Lett. B 781, 719–722 (2018)

    Article  ADS  Google Scholar 

  33. T.P. Cheng, Phys. Rev. D 13, 2161 (1976)

    Article  ADS  Google Scholar 

  34. Y. Ne’eman, Nucl. Phys. 26, 222–229 (1961)

    Article  Google Scholar 

  35. M. Gell-Mann, Phys. Rev. 125, 1067–1084 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Gell-Mann, Physics Physique Fizika 1, 63–75 (1964)

    Article  MathSciNet  Google Scholar 

  37. F. Von Hippel, J.K. Kim, Phys. Rev. D 1, 151–164 (1970). erratum: Phys. Rev. D3, 2923-2923 (1971)

    Article  ADS  Google Scholar 

  38. J. Gasser, H. Leutwyler, M.P. Locher, M.E. Sainio, Phys. Lett. B 213, 85–90 (1988)

    Article  ADS  Google Scholar 

  39. J. Gasser, H. Leutwyler, M.E. Sainio, Phys. Lett. B 253, 260–264 (1991)

    Article  ADS  Google Scholar 

  40. J.A. Oller, L. Roca, Phys. Lett. B 651, 139–146 (2007)

    Article  ADS  Google Scholar 

  41. J.F. Donoghue, J. Gasser, H. Leutwyler, Nucl. Phys. B 343, 341–368 (1990)

    Article  ADS  Google Scholar 

  42. J. Gasser, H. Leutwyler, M.E. Sainio, Phys. Lett. B 253, 252–259 (1991)

    Article  ADS  Google Scholar 

  43. M. Hoferichter, J. Ruiz de Elvira, B. Kubis, U.G. Meißner, Phys. Rev. Lett. 115, 092301 (2015)

    Article  ADS  Google Scholar 

  44. T. Becher, H. Leutwyler, Eur. Phys. J. C 9, 643–671 (1999)

    Article  ADS  Google Scholar 

  45. G. Altarelli, N. Cabibbo, L. Maiani, Phys. Lett. B 35, 415–418 (1971)

    Article  ADS  Google Scholar 

  46. M.G. Olsson, E.T. Osypowski, J. Phys. G 6, 423 (1980)

    Article  ADS  Google Scholar 

  47. M.G. Olsson, Phys. Lett. B 482, 50–56 (2000)

    Article  ADS  Google Scholar 

  48. D. Gotta, F. Amaro, D.F. Anagnostopoulos, S. Biri, D.S. Covita, H. Gorke, A. Gruber, M. Hennebach, A. Hirtl, T. Ishiwatari et al., Lect. Notes Phys. 745, 165–186 (2008)

    Article  ADS  Google Scholar 

  49. V. Baru, C. Hanhart, M. Hoferichter, B. Kubis, A. Nogga, D.R. Phillips, Nucl. Phys. A 872, 69–116 (2011)

    Article  ADS  Google Scholar 

  50. J. Gasser, H. Leutwyler, Phys. Lett. B 125, 325–329 (1983)

    Article  ADS  Google Scholar 

  51. J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984)

    Article  ADS  Google Scholar 

  52. J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465–516 (1985)

    Article  ADS  Google Scholar 

  53. J.M. Alarcon, J. Martin Camalich, J.A. Oller, Ann. Phys. 336, 413–461 (2013)

    Article  ADS  Google Scholar 

  54. P. Güttinger, Das verhalten von atomen im magnetischen drehfeld. Zeitschrift für Physik 73, 169–184 (1932)

    Article  ADS  MATH  Google Scholar 

  55. W. Pauli, Principles of Wave Mechanics, vol. 24 (Springer, New York, 1933), p. 162

    Google Scholar 

  56. H. Hellmann, Einführung in die Quantenchemie (Franz Deuticke, 1937) p. 285, OL21481721M

  57. R.P. Feynman, Forces in molecules. Phys. Rev. 56, 340–343 (1939)

    Article  ADS  MATH  Google Scholar 

  58. A. Abdel-Rehim et al., [ETM]. Phys. Rev. Lett. 116(25), 252001 (2016)

  59. S. Durr, Z. Fodor, C. Hoelbling, S.D. Katz, S. Krieg, L. Lellouch, T. Lippert, T. Metivet, A. Portelli, K.K. Szabo et al., Phys. Rev. Lett. 116(17), 172001 (2016)

    Article  ADS  Google Scholar 

  60. Y.B. Yang et al., [xQCD]. Phys. Rev. D 94(5), 054503 (2016)

    Article  ADS  Google Scholar 

  61. G.S. Bali et al., [RQCD]. Phys. Rev. D 93(9), 094504 (2016)

    Article  ADS  Google Scholar 

  62. C. Alexandrou, M. Constantinou, P. Dimopoulos, R. Frezzotti, K. Hadjiyiannakou, K. Jansen, C. Kallidonis, B. Kostrzewa, G. Koutsou, M. Mangin-Brinet et al., Phys. Rev. D 95(11), 114514 (2017). erratum: Phys. Rev. D 96, no.9, 099906 (2017)

    Article  ADS  Google Scholar 

  63. S. Borsanyi, Z. Fodor, C. Hoelbling, L. Lellouch, K. K. Szabo, C. Torrero, L. Varnhorst. arXiv:2007.03319 [hep-lat]

  64. E. Friedman, A. Gal, Phys. Lett. B 792, 340–344 (2019)

    Article  ADS  Google Scholar 

  65. G. Hoehler, H.P. Jakob, R. Strauss, Phys. Lett. B 35, 445–449 (1971)

    Article  ADS  Google Scholar 

  66. G. Hoehler, H.P. Jakob, R. Strauss, Nucl. Phys. B 39, 237–266 (1972)

    Article  ADS  Google Scholar 

  67. H. Nielsen, G.C. Oades, Nucl. Phys. B 72, 310–320 (1974)

    Article  ADS  Google Scholar 

  68. G.E. Hite, R.J. Jacob, Phys. Lett. B 53, 200–202 (1974)

    Article  ADS  Google Scholar 

  69. W. Langbein, Nucl. Phys. B 94, 519–547 (1975)

    Article  ADS  Google Scholar 

  70. Y.A. Chao, R.E. Cutkosky, R.L. Kelly, J.W. Alcock, Phys. Lett. B 57, 150–154 (1975)

    Article  ADS  Google Scholar 

  71. J. Gasser, Ann. Phys. 136, 62 (1981)

    Article  ADS  Google Scholar 

  72. R. Koch, Z. Phys. C 15, 161–168 (1982)

    Article  ADS  Google Scholar 

  73. J. Gasser, M.E. Sainio, A. Svarc, Nucl. Phys. B 307, 779–853 (1988)

  74. N. Fettes, U.G. Meissner, S. Steininger, Nucl. Phys. A 640, 199–234 (1998)

    Article  ADS  Google Scholar 

  75. N. Fettes, U.G. Meissner, Nucl. Phys. A 679, 629–670 (2001)

    Article  ADS  Google Scholar 

  76. M.M. Pavan, I.I. Strakovsky, R.L. Workman, R.A. Arndt, PiN Newslett. 16, 110–115 (2002)

    Google Scholar 

  77. H. Leutwyler, PoS CD15, 022 (2015)

  78. J. Ruiz de Elvira, M. Hoferichter, B. Kubis, U.G. Meißner, J. Phys. G 45(2), 024001 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank C. Alexandrou and N. Kaiser for allowing me to use the Figs. 4 and 2. I want to thank also J. A. Oller for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Alarcón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón, J.M. Brief history of the pion–nucleon sigma term. Eur. Phys. J. Spec. Top. 230, 1609–1622 (2021). https://doi.org/10.1140/epjs/s11734-021-00145-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00145-6

Navigation