Skip to main content
Log in

Holographic axion model: A simple gravitational tool for quantum matter

  • Invited Review
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

This is a complete and exhaustive review on the so-called holographic axion model—a bottom-up holographic system characterized by the presence of a set of shift symmetric scalar bulk fields whose profiles are taken to be linear in the spatial coordinates. This simple model implements the breaking of translational invariance of the dual field theory by retaining the homogeneity of the background geometry and therefore allowing for controllable and fast computations. The usages of this model are very vast and they are a proof of the spectacular versatility of the framework. In this review, we touch upon all the up-to-date aspects of this model from its connection with massive gravity and effective field theories, to its role in modeling momentum dissipation and elastic properties ending with all the phenomenological features and its hydrodynamic description. In summary, this is a complete guide to one of the most used models in Applied Holography and a must-read for any researcher entering this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Ammon, and J. Erdmenger, Gauge/Gravity Duality (Cambridge University Press, Cambridge, 2015).

    Book  MATH  Google Scholar 

  2. S. A. Hartnoll, A. Lucas, and S. Sachdev, Holographic Quantum Matter (The MIT Press, Cambridge, 2018).

    MATH  Google Scholar 

  3. S. A. Hartnoll, Class. Quantum Grav. 26, 224002 (2009), arXiv: 0903.3246.

    Article  ADS  Google Scholar 

  4. J. Zaanen, Y. Liu, Y. Sun, and K. Schalm, Holographic Duality in Condensed Matter Physics (Cambridge University Press, Cambridge, 2015).

    Book  Google Scholar 

  5. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge University Press, Cambridge, 2014).

    Book  MATH  Google Scholar 

  6. M. Baggioli, Applied Holography: A Practical Mini-Course, Springer Briefs in Physics (Springer, Cham, 2019).

    Book  Google Scholar 

  7. M. P. Heller, Acta Phys. Pol. B 47, 2581 (2016), arXiv: 1610.02023.

    Article  ADS  Google Scholar 

  8. W. Florkowski, M. P. Heller, and M. Spaliński, Rep. Prog. Phys. 81, 046001 (2018), arXiv: 1707.02282.

    Article  ADS  Google Scholar 

  9. J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); J. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

    Article  Google Scholar 

  10. O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323, 183 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Grüner, Rev. Mod. Phys. 60, 1129 (1988).

    Article  ADS  Google Scholar 

  12. T. Higaki, K. Kamada, and F. Takahashi, J. High Energ. Phys. 2012(9), 43 (2012).

    Article  Google Scholar 

  13. P. K. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005), arXiv: hep-th/0405231.

    Article  ADS  Google Scholar 

  14. G. T. Horowitz, J. E. Santos, and D. Tong, J. High Energ. Phys. 2012(7), 168 (2012).

    Article  Google Scholar 

  15. S. Nakamura, H. Ooguri, and C. S. Park, Phys. Rev. D 81, 044018 (2010), arXiv: 0911.0679.

    Article  ADS  Google Scholar 

  16. A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2011(8), 140 (2011).

    Article  Google Scholar 

  17. D. Vegh, arXiv: 1301.0537.

  18. T. Andrade, and B. Withers, J. High Energ. Phys. 2014(5), 101 (2014).

    Article  Google Scholar 

  19. A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2014(4), 40 (2014).

    Article  Google Scholar 

  20. A. Donos, and S. A. Hartnoll, Nat. Phys. 9, 649 (2013).

    Article  Google Scholar 

  21. M. Baggioli, and O. Pujolàs, Phys. Rev. Lett. 114, 251602 (2015).

    Article  ADS  Google Scholar 

  22. L. Alberte, M. Baggioli, A. Khmelnitsky, and O. Pujolàs, J. High Energ. Phys. 2016(2), 114 (2016).

    Article  Google Scholar 

  23. N. W. Ashcroft, N. D. Mermin, and B. P. Company, Solid State Physics, HRW International, ed. (Holt, Rinehart and Winston, New York, 1976).

    Google Scholar 

  24. A. A. Abrikosov, and A. Beknazarov, Fundamentals of the Theory of Metals (North-Holland, Amsterdam, 1988).

    Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics (Wiley, Hoboken, 2004).

    MATH  Google Scholar 

  26. M. Scheffler, M. Dressel, M. Jourdan, and H. Adrian, Nature 438, 1135 (2005).

    Article  ADS  Google Scholar 

  27. A. Fetter, and J. Walecka, Quantum Theory of Many-particle Systems, (Dover Publications, New York, 2003).

    MATH  Google Scholar 

  28. S. A. Hartnoll, and D. M. Hofman, Phys. Rev. Lett. 108, 241601 (2012), arXiv: 1201.3917.

    Article  ADS  Google Scholar 

  29. A. Lucas, and S. Sachdev, Phys. Rev. B 91, 195122 (2015), arXiv: 1502.04704.

    Article  ADS  Google Scholar 

  30. A. Lucas, in Theory of metallic transport in strongly coupled matter: Proceedings of the Geometry and Holography for Quantum Criticality Workshop, Pohang, 2017.

  31. P. Kovtun, J. Phys. A 45, 473001 (2012).

    Article  ADS  MathSciNet  Google Scholar 

  32. L. D. Landau, and E. M. Lifshitz, Theory of Elasticity, Course of Theoretical Physics (Pergamon Press, Oxford, 1989).

    Google Scholar 

  33. X. Zotos, F. Naef, and P. Prelovsek, Phys. Rev. B 55, 11029 (1997), arXiv: cond-mat/9611007.

    Article  ADS  Google Scholar 

  34. A. M. García-García, and A. Romero-Bermúdez, Phys. Rev. D 93, 066015 (2016), arXiv: 1512.04401.

    Article  ADS  MathSciNet  Google Scholar 

  35. P. Chaikin, and T. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  36. P. C. Martin, O. Parodi, and P. S. Pershan, Phys. Rev. A 6, 2401 (1972).

    Article  ADS  Google Scholar 

  37. H. Leutwyler, Helv. Phys. Acta 70, 275 (1997).

    Google Scholar 

  38. M. Baggioli, in Phases of Matter & Collective Excitations in the eyes of a high energy theorist: Proceedings of the Quantum Matter and Quantum Information with Holography Workshop, Pohang, 2020.

  39. A. J. Beekman, L. Rademaker, and J. van Wezel, arXiv: 1909.01820.

  40. M. Nitta, S. Sasaki, and R. Yokokura, Eur. Phys. J. C 78, 754 (2018), arXiv: 1706.02938.

    Article  ADS  Google Scholar 

  41. S. B. Gudnason, M. Nitta, S. Sasaki, and R. Yokokura, Phys. Rev. D 99, 045011 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Musso, Eur. Phys. J. C 79, 986 (2019), arXiv: 1810.01799.

    Article  ADS  Google Scholar 

  43. D. Musso, and D. Naegels, Phys. Rev. D 101, 045016 (2020), arXiv: 1907.04069.

    Article  ADS  MathSciNet  Google Scholar 

  44. A. Nicolis, R. Penco, F. Piazza, and R. Rattazzi, J. High Energ. Phys. 2015(6), 155 (2015).

    Article  Google Scholar 

  45. A. Nicolis, R. Penco, and R. A. Rosen, Phys. Rev. D 89, 045002 (2014).

    Article  ADS  Google Scholar 

  46. H. Kleinert, Gauge Fields in Condensed Matter, Vol. 2: Gauge Fields in Condensed Matter (World Scientific, Singapore, 1989).

    Book  MATH  Google Scholar 

  47. V. L. Gurevich, and A. Thellung, Phys. Rev. B 42, 7345 (1990).

    Article  ADS  Google Scholar 

  48. M. Baggioli, arXiv: 2010.05916.

  49. L. Alberte, M. Baggioli, V. C. Castillo, and O. Pujolàs, Phys. Rev. D 100, 065015 (2019), arXiv: 1807.07474.

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Baggioli, V. C. Castillo, and O. Pujolàs, Phys. Rev. D 101, 086005 (2020), arXiv: 1910.05281.

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Baggioli, V. C. Castillo, and O. Pujolàs, J. High Energ. Phys. 2020(9), 13 (2020).

    Article  Google Scholar 

  52. M. Baggioli, M. Vasin, V. Brazhkin, and K. Trachenko, Phys. Rep. 865, 1 (2020), arXiv: 1904.01419.

    Article  ADS  MathSciNet  Google Scholar 

  53. J. de Boer, M. P. Heller, and N. Pinzani-Fokeeva, J. High Energ. Phys. 2015(8), 86 (2015).

    Article  Google Scholar 

  54. H. Liu, and P. Glorioso, in Lectures on non-equilibrium effective field theories and fluctuating hydrodynamics: Proceedings of the Theoretical Advanced Study Institute Summer School 2017 “Physics at the Fundamental Frontier”, Boulder, 2018.

  55. E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  56. J. McGreevy, arXiv: 1606.08953.

  57. J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010).

    Article  Google Scholar 

  58. H. Nastase, arXiv: 0712.0689.

  59. A. V. Ramallo, Introduction to the AdS/CFT Correspondence, in C. Merino, ed. Lectures on Particle Physics, Astrophysics and Cosmology. Springer Proceedings in Physics, Vol. 161 (Springer, Cham, 2015).

  60. M. Ammon, and J. Erdmenger, Gauge/Gravity Duality: Foundations and Applications, 1st ed. (Cambridge University Press, New York, 2015).

    Book  MATH  Google Scholar 

  61. A. Zaffaroni, Class. Quantum Grav. 17, 3571 (2000).

    Article  ADS  Google Scholar 

  62. J. Polchinski, arXiv: 1010.6134.

  63. M. Natsuume, Lect. Notes Phys. 903, 1 (2015).

    Article  MathSciNet  Google Scholar 

  64. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B 428, 105 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  65. Y. L. J. Zaanen, Y. W. Sun, and K. Schalm, arXiv: 1810.02367.

  66. R. G. Cai, L. Li, L. F. Li, and R. Q. Yang, Sci. China-Phys. Mech. Astron. 58, 060401 (2015), arXiv: 1502.00437.

    Google Scholar 

  67. K. Landsteiner, Y. Liu, and Y.-W. Sun, Sci. China-Phys. Mech. Astron. 63, 250001 (2020), arXiv: 1911.07978.

    Article  ADS  Google Scholar 

  68. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, arXiv: 1101.0618.

  69. M. Rangamani, and T. Takayanagi, Holographic Entanglement Entropy, Vol. 931 (Springer, Cham, 2017).

    Book  MATH  Google Scholar 

  70. V. E. Hubeny, and M. Rangamani, Adv. High Energy Phys. 2010, 297916 (2010).

    Article  Google Scholar 

  71. H. Liu, and J. Sonner, arXiv: 1810.02367.

  72. S. Jain, N. Kundu, K. Sen, A. Sinha, and S. P. Trivedi, J. High Energ. Phys. 2015(1), 5 (2015).

    Article  Google Scholar 

  73. X. H. Ge, Y. Ling, C. Niu, and S. J. Sin, Phys. Rev. D 92, 106005 (2015), arXiv: 1412.8346.

    Article  ADS  Google Scholar 

  74. S. Jain, R. Samanta, and S. P. Trivedi, J. High Energ. Phys. 2015(10), 28 (2015).

    Article  Google Scholar 

  75. A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2016(3), 148 (2016).

    Article  Google Scholar 

  76. J. C. Dias, J. E. Santos, and B. Way, Class. Quantum Grav. 33, 133001 (2016), arXiv: 1510.02804.

    Article  ADS  Google Scholar 

  77. A. Krikun, arXiv: 1801.01483.

  78. T. Andrade, arXiv: 1712.00548.

  79. M. Blake, D. Tong, and D. Vegh, Phys. Rev. Lett. 112, 071602 (2014), arXiv: 1310.3832.

    Article  ADS  Google Scholar 

  80. P. Breitenlohner, and D. Z. Freedman, Phys. Lett. B 115, 197 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  81. N. Iizuka, S. Kachru, N. Kundu, P. Narayan, N. Sircar, and S. P. Trivedi, J. High Energ. Phys. 2012(7), 193 (2012).

    Article  Google Scholar 

  82. Y. Bardoux, M. M. Caldarelli, and C. Charmousis, J. High Energ. Phys. 2012(5), 54 (2012).

    Article  Google Scholar 

  83. M. Taylor, and W. Woodhead, Eur. Phys. J. C 74, 3176 (2014), arXiv: 1406.4870.

    Article  ADS  Google Scholar 

  84. R. A. Davison, B. Goutéraux, and S. A. Hartnoll, J. High Energ. Phys. 2015(10), 112 (2015).

    Article  ADS  Google Scholar 

  85. D. Tong, Acta Phys. Polon. B 44, 2579 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  86. K. Y. Kim, K. K. Kim, Y. Seo, and S. J. Sin, J. High Energ. Phys. 2014(12), 170 (2014).

    Article  ADS  Google Scholar 

  87. T. Andrade, S. A. Gentle, and B. Withers, J. High Energ. Phys. 2016(6), 134 (2016).

    Article  Google Scholar 

  88. R. A. Davison, and B. Goutéraux, J. High Energ. Phys. 2015(1), 39 (2015).

    Article  Google Scholar 

  89. R. A. Davison, and B. Goutéraux, J. High Energ. Phys. 2015(9), 90 (2015).

    Article  Google Scholar 

  90. M. Baggioli, and S. Grieninger, J. High Energ. Phys. 2019(10), 235 (2019).

    Article  ADS  Google Scholar 

  91. A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2014(11), 81 (2014).

    Article  Google Scholar 

  92. N. Iqbal, and H. Liu, Phys. Rev. D 79, 025023 (2009).

    Article  ADS  Google Scholar 

  93. R. A. Davison, W. Fu, A. Georges, Y. Gu, K. Jensen, and S. Sachdev, Phys. Rev. B 95, 155131 (2017), arXiv: 1612.00849.

    Article  ADS  Google Scholar 

  94. A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli, and D. Musso, Phys. Rev. D 91, 025002 (2015), arXiv: 1407.0306.

    Article  ADS  Google Scholar 

  95. Z. Zhou, J. P. Wu, and Y. Ling, J. High Energ. Phys. 2015(8), 67 (2015).

    Article  Google Scholar 

  96. A. Lucas, New J. Phys. 17, 113007 (2015), arXiv: 1506.02662.

    Article  ADS  Google Scholar 

  97. E. Banks, A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2015(10), 103 (2015).

    Article  ADS  Google Scholar 

  98. X. H. Ge, Y. Tian, S. Y. Wu, and S. F. Wu, Phys. Rev. D 96, 046015 (2017), arXiv: 1606.05959.

    Article  ADS  MathSciNet  Google Scholar 

  99. J. P. Wu, X. M. Kuang, and G. Fu, Eur. Phys. J. C 78, 616 (2018).

    Article  ADS  Google Scholar 

  100. M. Blake, and A. Donos, Phys. Rev. Lett. 114, 021601 (2015), arXiv: 1406.1659.

    Article  ADS  Google Scholar 

  101. A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2015(1), 35 (2015).

    Article  Google Scholar 

  102. L. Cheng, X. H. Ge, and Z. Y. Sun, J. High Energ. Phys. 2015(4), 135 (2015).

    Article  ADS  Google Scholar 

  103. A. Lucas, J. High Energ. Phys. 2015(3), 71 (2015).

    Article  Google Scholar 

  104. A. Amoretti, and D. Musso, J. High Energ. Phys. 2015(9), 94 (2015).

    Article  Google Scholar 

  105. M. Blake, A. Donos, and N. Lohitsiri, J. High Energ. Phys. 2015(8), 124 (2015).

    Article  Google Scholar 

  106. K. Y. Kim, K. K. Kim, Y. Seo, and S. J. Sin, J. High Energ. Phys. 2015(7), 27 (2015).

    Article  Google Scholar 

  107. A. Donos, J. P. Gauntlett, T. Griffin, and L. Melgar, J. High Energ. Phys. 2016(1), 113 (2016).

    Article  Google Scholar 

  108. S. Cremonini, H. S. Liu, H. Lu, and C. N. Pope, J. High Energ. Phys. 2017(4), 9 (2017).

    Article  Google Scholar 

  109. K. Y. Kim, K. K. Kim, Y. Seo, and S. J. Sin, Phys. Lett. B 749, 108 (2015), arXiv: 1502.02100.

    Article  ADS  Google Scholar 

  110. B. Goutéraux, E. Kiritsis, and W. J. Li, J. High Energ. Phys. 2016(4), 122 (2016).

    Article  Google Scholar 

  111. M. Baggioli, B. Goutéraux, E. Kiritsis, and W. J. Li, J. High Energ. Phys. 2017(3), 170 (2017).

    Article  Google Scholar 

  112. M. Baggioli, and W. J. Li, J. High Energ. Phys. 2017(7), 55 (2017).

    Article  Google Scholar 

  113. M. Baggioli, and O. Pujolàs, J. High Energ. Phys. 2017(1), 40 (2017).

    Article  Google Scholar 

  114. Y. S. An, T. Ji, and L. Li, J. High Energ. Phys. 2020(10), 23 (2020).

    Article  Google Scholar 

  115. L. Alberte, M. Ammon, M. Baggioli, A. Jiménez-Alba, and O. Pujolàs, arXiv: 1711.03100.

  116. J. Armas, and A. Jain, arXiv: 1908.01175.

  117. M. Ammon, M. Baggioli, S. Gray, S. Grieninger, and A. Jain, Phys. Lett. B 808, 135691 (2020), arXiv: 2001.05737.

    Article  MathSciNet  Google Scholar 

  118. A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, Phys. Rev. D 97, 086017 (2018), arXiv: 1711.06610.

    Article  ADS  MathSciNet  Google Scholar 

  119. W. J. Li, and J. P. Wu, Eur. Phys. J. C 79, 243 (2019), arXiv: 1808.03142.

    Article  ADS  Google Scholar 

  120. X.-J. Wang, and W.-J. Li, arXiv: 2105.07225.

  121. Y. Ling, C. Niu, J. P. Wu, Z. Y. Xian, and H. Zhang, Phys. Rev. Lett. 113, 091602 (2014), arXiv: 1404.0777.

    Article  ADS  Google Scholar 

  122. S. Cremonini, L. Li, and J. Ren, Phys. Rev. D 95, 041901 (2017).

    Article  ADS  Google Scholar 

  123. S. Cremonini, L. Li, and J. Ren, J. High Energ. Phys. 2017(8), 81 (2017).

    Article  Google Scholar 

  124. R. G. Cai, L. Li, Y. Q. Wang, and J. Zaanen, Phys. Rev. Lett. 119, 181601 (2017), arXiv: 1706.01470.

    Article  ADS  Google Scholar 

  125. L. Alberte, M. Baggioli, and O. Pujolàs, J. High Energ. Phys. 2016(7), 74 (2016).

    Article  Google Scholar 

  126. E. Berti, V. Cardoso, and A. O. Starinets, Class. Quantum Grav. 26, 163001 (2009), arXiv: 0905.2975.

    Article  ADS  Google Scholar 

  127. M. Ammon, M. Baggioli, S. Gray, and S. Grieninger, J. High Energ. Phys. 2019(10), 64 (2019).

    Article  Google Scholar 

  128. A. Esposito, S. Garcia-Saenz, A. Nicolis, and R. Penco, J. High Energ. Phys. 2017(12), 113 (2017).

    Article  ADS  Google Scholar 

  129. S. Grozdanov, and N. Poovuttikul, Phys. Rev. D 97, 106005 (2018), arXiv: 1801.03199.

    Article  ADS  MathSciNet  Google Scholar 

  130. D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High Energ. Phys. 2015(2), 172 (2015).

    Article  Google Scholar 

  131. S. Grozdanov, D. M. Hofman, and N. Iqbal, Phys. Rev. D 95, 096003 (2017), arXiv: 1610.07392.

    Article  ADS  Google Scholar 

  132. B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  133. L. V. Delacrétaz, B. Goutéraux, S. A. Hartnoll, and A. Karlsson, Phys. Rev. B 96, 195128 (2017), arXiv: 1702.05104.

    Article  ADS  Google Scholar 

  134. L. Delacrétaz, B. Goutéraux, S. Hartnoll, and A. Karlsson, SciPost Phys. 3, 025 (2017), arXiv: 1612.04381.

    Article  ADS  Google Scholar 

  135. A. Amoretti, M. Meinero, D. K. Brattan, F. Caglieris, E. Giannini, M. Affronte, C. Hess, B. Buechner, N. Magnoli, and M. Putti, Phys. Rev. Res. 2, 023387 (2020), arXiv: 1909.07991.

    Article  Google Scholar 

  136. L. P. Kadanoff, and P. C. Martin, Ann. Phys. 24, 419 (1963).

    Article  ADS  Google Scholar 

  137. S. L. Grieninger, Non-Equilibrium Dynamics in Holography, Dissertation for Doctoral Degree (Jena University, Jena, 2020).

    Google Scholar 

  138. J. Armas, and A. Jain, arXiv: 2001.07357.

  139. A. Donos, and J. P. Gauntlett, J. High Energ. Phys. 2013(10), 38 (2013).

    Article  Google Scholar 

  140. M. Ammon, M. Baggioli, and A. Jiménez-Alba, arXiv: 1904.05785.

  141. S. N. Taraskin, and S. R. Elliott, Phys. Rev. B 61, 12031 (2000).

    Article  ADS  Google Scholar 

  142. S. N. Taraskin, and S. R. Elliott, J. Phys.-Condens. Matter 14, 3143 (2002), arXiv: cond-mat/0204549.

    Article  ADS  Google Scholar 

  143. Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, Phys. Rev. B 87, 134203 (2013), arXiv: 1210.2257.

    Article  ADS  Google Scholar 

  144. H. Shintani, and H. Tanaka, Nat. Mater. 7, 870 (2008).

    Article  ADS  Google Scholar 

  145. M. Baggioli, S. Grieninger, and L. Li, J. High Energ. Phys. 2020(9), 37 (2020).

    Article  Google Scholar 

  146. M. Baggioli, S. Grieninger, and H. Soltanpanahi, Phys. Rev. Lett. 124, 081601 (2020), arXiv: 1910.06331.

    Article  ADS  Google Scholar 

  147. A. Donos, D. Martin, C. Pantelidou, and V. Ziogas, J. High Energ. Phys. 2019(10), 218 (2019).

    Article  ADS  Google Scholar 

  148. A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, Phys. Rev. Lett. 123, 211602 (2019), arXiv: 1812.08118.

    Article  ADS  Google Scholar 

  149. M. Baggioli, Phys. Rev. Res. 2, 022022 (2020), arXiv: 1906.07119.

    Article  Google Scholar 

  150. P. Steinhardt, The Second Kind of Impossible: The Extraordinary Quest for a New Form of Matter (Simon & Schuster, New York, 2019).

    Google Scholar 

  151. T. Janssen, Phys. Rep. 168, 55 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  152. D. DiVincenzo, and P. Steinhardt, Quasicrystals: The State of the Art, Series on Directions in Condensed Matter Physics (World Scientific, Singapore, 1999).

    Book  Google Scholar 

  153. C. Janot, Quasicrystals: A Primer, Monographs on the Physics and Chemistry of Materials (Clarendon Press, Oxford, 1997).

    MATH  Google Scholar 

  154. T. C. Lubensky, S. Ramaswamy, and J. Toner, Phys. Rev. B 32, 7444 (1985).

    Article  ADS  Google Scholar 

  155. W. Finger, and T. M. Rice, Phys. Rev. Lett. 49, 468 (1982).

    Article  ADS  Google Scholar 

  156. M. B. Walker, and R. J. Gooding, Phys. Rev. B 32, 7412 (1985).

    Article  ADS  Google Scholar 

  157. R. Currat, E. Kats, and I. Luk’yanchuk, Eur. Phys. J. B 26, 339 (2002), arXiv: cond-mat/0203385.

    ADS  Google Scholar 

  158. R. Zeyher, and W. Finger, Phys. Rev. Lett. 49, 1833 (1982).

    Article  ADS  Google Scholar 

  159. E. Agiasofitou, and M. Lazar, Int. J. Solids Struct. 51, 923 (2014).

    Article  Google Scholar 

  160. S. Francoual, F. Livet, M. de Boissieu, F. Yakhou, F. Bley, A. Létoublon, R. Caudron, and J. Gastaldi, Phys. Rev. Lett. 91, 225501 (2003).

    Article  ADS  Google Scholar 

  161. D. Durand, R. Papoular, R. Currat, M. Lambert, J. F. Legrand, and F. Mezei, Phys. Rev. B 43, 10690 (1991).

    Article  ADS  Google Scholar 

  162. M. Quilichini, and R. Currat, Solid State Commun. 48, 1011 (1983).

    Article  ADS  Google Scholar 

  163. T. Janssen, and A. Janner, Acta Crystall. Sect. B 70, 617 (2014).

    Article  Google Scholar 

  164. M. Baggioli, and M. Landry, arXiv: 2008.05339.

  165. T. Andrade, M. Baggioli, and A. Krikun, arXiv: 2009.05551.

  166. R. A. Davison, Phys. Rev. D 88, 086003 (2013), arXiv: 1306.5792.

    Article  ADS  Google Scholar 

  167. M. Baggioli, and K. Trachenko, J. High Energ. Phys. 2019(3), 93 (2019).

    Article  Google Scholar 

  168. M. Baggioli, and K. Trachenko, Phys. Rev. D 99, 106002 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  169. L. Noirez, and P. Baroni, J. Phys.-Condens. Matter 24, 372101 (2012).

    Article  Google Scholar 

  170. E. Kume, P. Baroni, and L. Noirez, Sci. Rep. 10, 13340 (2020), arXiv: 2002.02744.

    Article  ADS  Google Scholar 

  171. E. Kume, A. Zaccone, and L. Noirez, arXiv: 2009.09788.

  172. M. Grimsditch, R. Bhadra, and L. M. Torell, Phys. Rev. Lett. 62, 2616 (1989).

    Article  ADS  Google Scholar 

  173. M. Baggioli, M. Vasin, V. V. Brazhkin, and K. Trachenko, Phys. Rev. D 102, 025012 (2020), arXiv: 2004.13613.

    Article  ADS  MathSciNet  Google Scholar 

  174. D. Hofman, and N. Iqbal, SciPost Phys. 4, 005 (2018), arXiv: 1707.08577.

    Article  ADS  Google Scholar 

  175. R. E. Arias, and I. S. Landea, J. High Energ. Phys. 2014(11), 47 (2014).

    Article  Google Scholar 

  176. M. Baggioli, U. Gran, and M. Tornsö, J. High Energ. Phys. 2020(4), 106 (2020).

    Article  Google Scholar 

  177. U. Gran, M. Tornsö, and T. Zingg, J. High Energ. Phys. 2019(2), 32 (2019).

    Article  Google Scholar 

  178. M. Baggioli, U. Gran, A. J. Alba, M. Tornsö, and T. Zingg, J. High Energ. Phys. 2019(9), 13 (2019).

    Article  Google Scholar 

  179. S. Grozdanov, A. Lucas, and N. Poovuttikul, Phys. Rev. D 99, 086012 (2019), arXiv: 1810.10016.

    Article  ADS  MathSciNet  Google Scholar 

  180. S. Arrhenius, Zeitsch. Physik. Chem. 4U, 96 (1889).

    Article  Google Scholar 

  181. T. Schäfer, and D. Teaney, Rep. Prog. Phys. 72, 126001 (2009), arXiv: 0904.3107.

    Article  ADS  Google Scholar 

  182. S. Cremonini, Mod. Phys. Lett. B 25, 1867 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  183. M. Luzum, and P. Romatschke, Phys. Rev. C 78, 034915 (2008), arXiv: 0804.4015; M. Luzum, and P. Romatschke, Phys. Rev. C 79, 039903 (2009).

    Article  ADS  Google Scholar 

  184. J. L. Nagle, I. G. Bearden, and W. A. Zajc, New J. Phys. 13, 075004 (2011), arXiv: 1102.0680.

    Article  ADS  Google Scholar 

  185. C. Shen, U. Heinz, P. Huovinen, and H. Song, Phys. Rev. C 84, 044903 (2011), arXiv: 1105.3226.

    Article  ADS  Google Scholar 

  186. A. Buchel, J. T. Liu, and A. O. Starinets, Nucl. Phys. B 707, 56 (2005), arXiv: hep-th/0406264.

    Article  ADS  Google Scholar 

  187. A. Buchel, Phys. Lett. B 665, 298 (2008), arXiv: 0804.3161.

    Article  ADS  Google Scholar 

  188. R. C. Myers, M. F. Paulos, and A. Sinha, Phys. Rev. D 79, 041901 (2009), arXiv: 0806.2156.

    Article  ADS  Google Scholar 

  189. A. Buchel, R. C. Myers, M. F. Paulos, and A. Sinha, Phys. Lett. B 669, 364 (2008), arXiv: 0808.1837.

    Article  ADS  Google Scholar 

  190. A. Ghodsi, and M. Alishahiha, Phys. Rev. D 80, 026004 (2009), arXiv: 0901.3431.

    Article  ADS  Google Scholar 

  191. A. Buchel, Nucl. Phys. B 803, 166 (2008), arXiv: 0805.2683.

    Article  ADS  MathSciNet  Google Scholar 

  192. M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida, Phys. Rev. D 77, 126006 (2008), arXiv: 0712.0805.

    Article  ADS  Google Scholar 

  193. M. Brigante, H. Liu, R. C. Myers, S. Shenker, and S. Yaida, Phys. Rev. Lett. 100, 191601 (2008), arXiv: 0802.3318.

    Article  ADS  Google Scholar 

  194. Y. Kats, and P. Petrov, J. High Energ. Phys. 2009(01), 044 (2009), arXiv: 0712.0743.

    Article  Google Scholar 

  195. A. Rebhan, and D. Steineder, Phys. Rev. Lett. 108, 021601 (2012), arXiv: 1110.6825.

    Article  ADS  Google Scholar 

  196. D. Giataganas, in Observables in strongly coupled anisotropic theories: Proceedings of the Corfu Summer Institute 2012 “School and Workshops on Elementary Particle Physics and Gravity”, Corfu, 2012.

  197. V. Jahnke, A. S. Misobuchi, and D. Trancanelli, J. High Energ. Phys. 2015(1), 122 (2015).

    Article  Google Scholar 

  198. D. Mateos, and D. Trancanelli, Phys. Rev. Lett. 107, 101601 (2011), arXiv: 1105.3472.

    Article  ADS  Google Scholar 

  199. D. Mateos, and D. Trancanelli, J. High Energ. Phys. 2011(7), 54 (2011).

    Article  Google Scholar 

  200. D. Giataganas, J. High Energ. Phys. 2012(7), 31 (2012).

    Article  Google Scholar 

  201. D. Giataganas, and H. Soltanpanahi, Phys. Rev. D 89, 026011 (2014), arXiv: 1310.6725.

    Article  ADS  Google Scholar 

  202. D. Giataganas, U. Gürsoy, and J. F. Pedraza, Phys. Rev. Lett. 121, 121601 (2018), arXiv: 1708.05691.

    Article  ADS  Google Scholar 

  203. S. I. Finazzo, R. Critelli, R. Rougemont, and J. Noronha, Phys. Rev. D 94, 054020 (2016), arXiv: 1605.06061.

    Article  ADS  Google Scholar 

  204. E. I. Buchbinder, and A. Buchel, Phys. Rev. D 79, 046006 (2009), arXiv: 0811.4325.

    Article  ADS  Google Scholar 

  205. S. A. Hartnoll, D. M. Ramirez, and J. E. Santos, J. High Energ. Phys. 2016(3), 170 (2016).

    Article  Google Scholar 

  206. Y. Ling, Z. Xian, and Z. Zhou, J. High Energ. Phys. 2016(11), 7 (2016).

    Article  Google Scholar 

  207. P. Burikham, and N. Poovuttikul, Phys. Rev. D 94, 106001 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  208. X. H. Ge, S. K. Jian, Y. L. Wang, Z. Y. Xian, and H. Yao, Phys. Rev. Res. 2, 023366 (2020).

    Article  Google Scholar 

  209. M. P. Gochan, H. Li, and K. S. Bedell, arXiv: 1801.08627.

  210. T. D. Cohen, Phys. Rev. Lett. 99, 021602 (2007), arXiv: hep-th/0702136.

    Article  ADS  MathSciNet  Google Scholar 

  211. S. A. Hartnoll, Nat. Phys. 11, 54 (2015), arXiv: 1405.3651.

    Article  Google Scholar 

  212. M. Baggioli, and W.-J. Li, SciPost Phys. 9, 007 (2020).

    Article  ADS  Google Scholar 

  213. J. Zaanen, Nature 430, 512 (2004).

    Article  ADS  Google Scholar 

  214. J. Zaanen, SciPost Phys. 6, 61 (2019), arXiv: 1807.10951.

    Article  ADS  MathSciNet  Google Scholar 

  215. T. Ciobanu, and D. M. Ramirez, arXiv: 1708.04997.

  216. K. Trachenko, V. Brazhkin, and M. Baggioli, arXiv: 2003.13506.

  217. M. Blake, Phys. Rev. Lett. 117, 091601 (2016).

    Article  ADS  Google Scholar 

  218. M. Blake, Phys. Rev. D 94, 086014 (2016), arXiv: 1604.01754.

    Article  ADS  MathSciNet  Google Scholar 

  219. A. I. Larkin, and Y. N. Ovchinnikov, Soviet J. Exper. Theor. Phys. 28, 1200 (1969).

    ADS  Google Scholar 

  220. T. Damour, and M. Lilley, Les Houches 87, 371 (2008).

    Article  Google Scholar 

  221. C. Niu, and K. Y. Kim, J. High Energ. Phys. 2017(6), 30 (2017).

    Article  Google Scholar 

  222. P. Kovtun, J. Phys. A-Math. Theor. 48, 265002 (2015), arXiv: 1407.0690.

    Article  ADS  MathSciNet  Google Scholar 

  223. M. Blake, R. A. Davison, and S. Sachdev, Phys. Rev. D 96, 106008 (2017), arXiv: 1705.07896.

    Article  ADS  MathSciNet  Google Scholar 

  224. H. S. Jeong, Y. Ahn, D. Ahn, C. Niu, W. J. Li, and K. Y. Kim, J. High Energ. Phys. 2018(1), 140 (2018).

    Article  Google Scholar 

  225. S. Grozdanov, K. Schalm, and V. Scopelliti, Phys. Rev. Lett. 120, 231601 (2018), arXiv: 1710.00921.

    Article  ADS  Google Scholar 

  226. M. Blake, H. Lee, and H. Liu, J. High Energ. Phys. 2018(10), 127 (2018).

    Article  ADS  Google Scholar 

  227. M. Blake, R. A. Davison, S. Grozdanov, and H. Liu, J. High Energ. Phys. 2018(10), 35 (2018).

    Article  Google Scholar 

  228. Y. Ahn, V. Jahnke, H.-S. Jeong, K.-Y. Kim, K.-S. Lee, and M. Nishida, arXiv: 2010.16166.

  229. Y. Ahn, V. Jahnke, H. S. Jeong, K. Y. Kim, K. S. Lee, and M. Nishida, J. High Energ. Phys. 2020(9), 111 (2020).

    Article  Google Scholar 

  230. Y. Ahn, V. Jahnke, H.-S. Jeong, C.-W. Ji, K.-Y. Kim, and M. Nishida, work in progress.

  231. C. Choi, M. Mezei, and G. Sárosi, arXiv: 2010.08558.

  232. M. Blake, and A. Donos, J. High Energ. Phys. 2017(2), 13 (2017).

    Article  Google Scholar 

  233. M. Crossley, P. Glorioso, and H. Liu, J. High Energ. Phys. 2017(9), 95 (2017).

    Article  Google Scholar 

  234. S. Grozdanov, P. K. Kovtun, A. O. Starinets, and P. Tadić, arXiv: 1904.12862.

  235. M. Blake, R. A. Davison, and D. Vegh, J. High Energ. Phys. 2020(1), 77 (2020).

    Article  Google Scholar 

  236. M. Natsuume, and T. Okamura, J. High Energ. Phys. 2019(12), 139 (2019).

    Article  ADS  Google Scholar 

  237. N. Čeplak, K. Ramdial, and D. Vegh, J. High Energ. Phys. 2020(7), 203 (2020).

    Article  Google Scholar 

  238. S. Grozdanov, arXiv: 2008.00888.

  239. F. M. Haehl, W. Reeves, and M. Rozali, J. High Energ. Phys. 2019(11), 102 (2019).

    Article  ADS  Google Scholar 

  240. Y. Gu, X.-L. Qi, and D. Stanford, arXiv: 1609.07832.

  241. F. M. Haehl, and M. Rozali, J. High Energ. Phys. 2018(10), 118 (2018).

    Article  ADS  Google Scholar 

  242. Y. Ahn, V. Jahnke, H. S. Jeong, and K. Y. Kim, J. High Energ. Phys. 2019(10), 257 (2019).

    Article  ADS  Google Scholar 

  243. V. Jahnke, K. Y. Kim, and J. Yoon, J. High Energ. Phys. 2019(5), 37 (2019).

    Article  Google Scholar 

  244. Y. Liu, and A. Raju, J. High Energ. Phys. 2020(12), 27 (2020).

    Article  Google Scholar 

  245. J. Maldacena, S. H. Shenker, and D. Stanford, J. High Energ. Phys. 2016(8), 106 (2016).

    Article  Google Scholar 

  246. E. Perlmutter, J. High Energ. Phys. 2016(10), 69 (2016).

    Article  Google Scholar 

  247. C. H. Mousatov, and S. A. Hartnoll, arXiv: 2011.10466.

  248. C. H. Mousatov, and S. A. Hartnoll, Nat. Phys. 16, 579 (2020), arXiv: 1908.04792.

    Article  Google Scholar 

  249. J. Zhang, E. M. Levenson-Falk, B. J. Ramshaw, D. A. Bonn, R. Liang, W. N. Hardy, S. A. Hartnoll, and A. Kapitulnik, Proc. Natl. Acad. Sci. USA 114, 5378 (2017), arXiv: 1610.05845.

    Article  ADS  Google Scholar 

  250. L. Xu, B. Fauqué, Z. Zhu, Z. Galazka, K. Irmscher, and K. Behnia, arXiv: 2008.13519.

  251. J. Zhang, E. D. Kountz, K. Behnia, and A. Kapitulnik, Proc. Natl. Acad. Sci. USA 116, 19869 (2019), arXiv: 2001.03805.

    Article  ADS  MathSciNet  Google Scholar 

  252. K. Behnia, and A. Kapitulnik, J. Phys.-Condens. Matter 31, 405702 (2019), arXiv: 1905.03551.

    Article  Google Scholar 

  253. A. Lucas, and J. Steinberg, J. High Energ. Phys. 2016(10), 143 (2016).

    Article  ADS  Google Scholar 

  254. D. A. Roberts, and B. Swingle, Phys. Rev. Lett. 117, 091602 (2016).

    Article  ADS  Google Scholar 

  255. P. C. Peters, Am. J. Phys. 56, 129 (1988).

    Article  ADS  Google Scholar 

  256. W. Israel, and J. M. Stewart, Ann. Phys. 118, 341 (1979).

    Article  ADS  Google Scholar 

  257. D. Arean, R. A. Davison, B. Goutéraux, and K. Suzuki, arXiv: 2011.12301.

  258. P. M. Hohler, and M. A. Stephanov, Phys. Rev. D 80, 066002 (2009), arXiv: 0905.0900.

    Article  ADS  Google Scholar 

  259. A. Cherman, T. D. Cohen, and A. Nellore, Phys. Rev. D 80, 066003 (2009), arXiv: 0905.0903.

    Article  ADS  Google Scholar 

  260. P. Bedaque, and A. W. Steiner, Phys. Rev. Lett. 114, 031103 (2015), arXiv: 1408.5116.

    Article  ADS  Google Scholar 

  261. C. Hoyos, N. Jokela, D. Rodríguez Fernández, and A. Vuorinen, Phys. Rev. D 94, 106008 (2016), arXiv: 1609.03480.

    Article  ADS  Google Scholar 

  262. A. Anabalón, T. Andrade, D. Astefanesei, and R. Mann, Phys. Lett. B 781, 547 (2018), arXiv: 1702.00017.

    Article  ADS  Google Scholar 

  263. C. Burgess, Phys. Rep. 330, 193 (2000).

    Article  ADS  Google Scholar 

  264. L. Alberte, M. Ammon, M. Baggioli, A. Jiménez, and O. Pujolàs, J. High Energ. Phys. 2018(1), 129 (2018).

    Article  Google Scholar 

  265. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, Phys. Rev. Lett. 101, 031601 (2008), arXiv: 0803.3295.

    Article  ADS  Google Scholar 

  266. A. Amoretti, D. Areán, R. Argurio, D. Musso, and L. A. P. Zayas, J. High Energ. Phys. 2017(5), 51 (2017).

    Article  Google Scholar 

  267. T. Andrade, M. Baggioli, A. Krikun, and N. Poovuttikul, J. High Energ. Phys. 2018(2), 85 (2018).

    Article  Google Scholar 

  268. M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175, 2195 (1968).

    Article  ADS  Google Scholar 

  269. A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, arXiv: 1904.11445.

  270. T. Andrade, and A. Krikun, arXiv: 1812.08132.

  271. A. Amoretti, D. Areán, B. Goutéraux, and D. Musso, J. High Energ. Phys. 2020(1), 58 (2020).

    Article  Google Scholar 

  272. A. Donos, D. Martin, C. Pantelidou, and V. Ziogas, Class. Quantum Grav. 37, 045005 (2020), arXiv: 1906.03132.

    Article  ADS  Google Scholar 

  273. M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).

    Article  ADS  Google Scholar 

  274. V. Dobrosavljevic, arXiv: 1112.6166.

  275. S. Grozdanov, A. Lucas, S. Sachdev, and K. Schalm, Phys. Rev. Lett. 115, 221601 (2015), arXiv: 1507.00003.

    Article  ADS  Google Scholar 

  276. E. Mefford, and G. T. Horowitz, Phys. Rev. D 90, 084042 (2014), arXiv: 1406.4188.

    Article  ADS  Google Scholar 

  277. M. Rangamani, M. Rozali, and D. Smyth, J. High Energ. Phys. 2015(7), 24 (2015).

    Article  Google Scholar 

  278. M. Baggioli, and O. Pujolàs, J. High Energ. Phys. 2016(12), 107 (2016).

    Article  ADS  Google Scholar 

  279. S. Cremonini, A. Hoover, and L. Li, J. High Energ. Phys. 2017(10), 133 (2017).

    Article  ADS  Google Scholar 

  280. S. V. Kravchenko, W. E. Mason, G. E. Bowker, J. E. Furneaux, V. M. Pudalov, and M. D’Iorio, Phys. Rev. B 51, 7038 (1995).

    Article  ADS  Google Scholar 

  281. S. V. Kravchenko, D. Simonian, M. P. Sarachik, W. Mason, and J. E. Furneaux, Phys. Rev. Lett. 77, 4938 (1996), arXiv: cond-mat/9608101.

    Article  ADS  Google Scholar 

  282. P. T. Coleridge, R. L. Williams, Y. Feng, and P. Zawadzki, Phys. Rev. B 56, R12764 (1997), arXiv: cond-mat/9708118.

    Article  ADS  Google Scholar 

  283. M. Y. Simmons, A. R. Hamilton, M. Pepper, E. H. Linfield, P. D. Rose, D. A. Ritchie, A. K. Savchenko, and T. G. Griffiths, Phys. Rev. Lett. 80, 1292 (1998), arXiv: cond-mat/9709240.

    Article  ADS  Google Scholar 

  284. V. Dobrosavljević, E. Abrahams, E. Miranda, and S. Chakravarty, Phys. Rev. Lett. 79, 455 (1997), arXiv: cond-mat/9704091.

    Article  ADS  Google Scholar 

  285. A. W. Tyler, and A. P. Mackenzie, Phys. C Supercond. 282, 1185 (1997).

    Article  ADS  Google Scholar 

  286. A. Amoretti, M. Baggioli, N. Magnoli, and D. Musso, J. High Energ. Phys. 2016(6), 113 (2016).

    Article  Google Scholar 

  287. S. A. Hartnoll, J. Polchinski, E. Silverstein, and D. Tong, J. High Energ. Phys. 2010(4), 120 (2010).

    Article  Google Scholar 

  288. B. S. Kim, E. Kiritsis, and C. Panagopoulos, New J. Phys. 14, 043045 (2012), arXiv: 1012.3464.

    Article  ADS  Google Scholar 

  289. A. Karch, J. High Energ. Phys. 2014(6), 140 (2014).

    Article  MathSciNet  Google Scholar 

  290. E. Blauvelt, S. Cremonini, A. Hoover, L. Li, and S. Waskie, Phys. Rev. D 97, 061901 (2018), arXiv: 1710.01326.

    Article  ADS  Google Scholar 

  291. I. M. Hayes, R. D. McDonald, N. P. Breznay, T. Helm, P. J. W. Moll, M. Wartenbe, A. Shekhter, and J. G. Analytis, Nat. Phys. 12, 916 (2016), arXiv: 1412.6484.

    Article  Google Scholar 

  292. P. Giraldo-Gallo, J. A. Galvis, Z. Stegen, K. A. Modic, F. F. Balakirev, J. B. Betts, X. Lian, C. Moir, S. C. Riggs, J. Wu, A. T. Bollinger, X. He, I. Božović, B. J. Ramshaw, R. D. McDonald, G. S. Boebinger, and A. Shekhter, Science 361, 479 (2018), arXiv: 1705.05806.

    Article  ADS  Google Scholar 

  293. E. Kiritsis, and L. Li, J. Phys. A-Math. Theor. 50, 115402 (2017), arXiv: 1608.02598.

    Article  ADS  Google Scholar 

  294. S. Cremonini, A. Hoover, L. Li, and S. Waskie, Phys. Rev. D 99, 061901 (2019), arXiv: 1812.01040.

    Article  ADS  Google Scholar 

  295. S. Sachdev, arXiv: 1012.0299.

  296. S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010), arXiv: 1006.3794.

    Article  ADS  Google Scholar 

  297. D. V. Khveshchenko, arXiv: 2011.11617.

  298. N. Singh, arXiv: 2006.06335.

  299. S. A. Hartnoll, C. P. Herzog, and G. T. Horowitz, J. High Energ. Phys. 2008(12), 015 (2008), arXiv: 0810.1563.

    Article  Google Scholar 

  300. T. Andrade, and S. A. Gentle, J. High Energ. Phys. 2015(6), 140 (2015).

    Article  Google Scholar 

  301. K. Y. Kim, K. K. Kim, and M. Park, J. High Energ. Phys. 2015(4), 152 (2015).

    Article  Google Scholar 

  302. M. Baggioli, and M. Goykhman, J. High Energ. Phys. 2015(7), 35 (2015).

    Article  Google Scholar 

  303. M. Baggioli, and M. Goykhman, J. High Energ. Phys. 2016(1), 11 (2016).

    Article  Google Scholar 

  304. K. K. Kim, M. Park, and K. Y. Kim, J. High Energ. Phys. 2016(10), 41 (2016).

    Article  Google Scholar 

  305. Y. Ling, and X. Zheng, Nucl. Phys. B 917, 1 (2017), arXiv: 1609.09717.

    Article  ADS  Google Scholar 

  306. B. Goutéraux, and E. Mefford, Phys. Rev. Lett. 124, 161604 (2020), arXiv: 1912.08849.

    Article  ADS  MathSciNet  Google Scholar 

  307. C. C. Homes, S. V. Dordevic, M. Strongin, D. A. Bonn, R. Liang, W. N. Hardy, S. Komiya, Y. Ando, G. Yu, N. Kaneko, X. Zhao, M. Greven, D. N. Basov, and T. Timusk, Nature 430, 539 (2004), arXiv: cond-mat/0404216.

    Article  ADS  Google Scholar 

  308. J. Erdmenger, B. Herwerth, S. Klug, R. Meyer, and K. Schalm, J. High Energ. Phys. 2015(5), 94 (2015).

    Article  Google Scholar 

  309. C. Niu, and K. Y. Kim, J. High Energ. Phys. 2016(10), 144 (2016).

    Article  ADS  Google Scholar 

  310. H. S. Jeong, C. Niu, and K. Y. Kim, J. High Energ. Phys. 2018(10), 191 (2018).

    Article  ADS  Google Scholar 

  311. Y. Ahn, H. S. Jeong, D. Ahn, and K. Y. Kim, J. High Energ. Phys. 2020(4), 153 (2020).

    Article  Google Scholar 

  312. T. Andrade, and A. Krikun, J. High Energ. Phys. 2016(5), 39 (2016).

    Article  Google Scholar 

  313. T. Andrade, and A. Krikun, J. High Energ. Phys. 2017(3), 168 (2017).

    Article  Google Scholar 

  314. S. A. Hartnoll, and P. K. Kovtun, Phys. Rev. D 76, 066001 (2007), arXiv: 0704.1160.

    Article  ADS  Google Scholar 

  315. S. A. Hartnoll, P. K. Kovtun, M. Muller, and S. Sachdev, Phys. Rev. B 76, 144502 (2007).

    Article  ADS  Google Scholar 

  316. S. A. Hartnoll, and C. P. Herzog, Phys. Rev. D 76, 106012 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  317. Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006), arXiv: cond-mat/0510470.

    Article  ADS  Google Scholar 

  318. Y. P. Chen, Quantum Solids of Two Dimensional Electrons in Magnetic Fields, Dissertation for Doctoral Degree (Princeton University, Princeton, 2005).

    Google Scholar 

  319. H. Fukuyama, and P. A. Lee, Phys. Rev. B 18, 6245 (1978).

    Article  ADS  Google Scholar 

  320. B. G. A. Normand, P. B. Littlewood, and A. J. Millis, Phys. Rev. B 46, 3920 (1992).

    Article  ADS  Google Scholar 

  321. H. Watanabe, and H. Murayama, Phys. Rev. X 4, 031057 (2014).

    Google Scholar 

  322. T. Hayata, and Y. Hidaka, Phys. Rev. D 91, 056006 (2015).

    Article  ADS  Google Scholar 

  323. H. A. Fertig, Phys. Rev. B 59, 2120 (1999).

    Article  ADS  Google Scholar 

  324. M. M. Fogler, and D. A. Huse, Phys. Rev. B 62, 7553 (2000), arXiv: cond-mat/0004343.

    Article  ADS  Google Scholar 

  325. R. Chitra, T. Giamarchi, and P. Le Doussal, Phys. Rev. B 65, 035312 (2001), arXiv: cond-mat/0103392.

    Article  ADS  Google Scholar 

  326. L. V. Delacrétaz, B. Goutéraux, S. A. Hartnoll, and A. Karlsson, Phys. Rev. B 100, 085140 (2019).

    Article  ADS  Google Scholar 

  327. V. Balasubramanian, and P. Kraus, Commun. Math. Phys. 208, 413 (1999), arXiv: hep-th/9902121.

    Article  ADS  Google Scholar 

  328. A. Pipkin, Lectures on Viscoelasticity Theory, Applied Mathematical Sciences 7 (Springer-Verlag, Berlin, 1986).

    MATH  Google Scholar 

  329. K. Hyun, M. Wilhelm, C. O. Klein, K. S. Cho, J. G. Nam, K. H. Ahn, S. J. Lee, R. H. Ewoldt, and G. H. McKinley, Prog. Polym. Sci. 36, 1697 (2011).

    Article  Google Scholar 

  330. S. Rogers, Phys. Today 71, 34 (2018).

    Article  Google Scholar 

  331. U. Gran, M. Tornsö, and T. Zingg, J. High Energ. Phys. 2018(11), 176 (2018).

    Article  ADS  Google Scholar 

  332. M. Mitrano, A. A. Husain, S. Vig, A. Kogar, M. S. Rak, S. I. Rubeck, J. Schmalian, B. Uchoa, J. Schneeloch, R. Zhong, G. D. Gu, and P. Abbamonte, Proc. Natl. Acad. Sci. USA 115, 5392 (2018), arXiv: 1708.01929.

    Article  ADS  Google Scholar 

  333. A. A. Husain, M. Mitrano, M. S. Rak, S. Rubeck, B. Uchoa, K. March, C. Dwyer, J. Schneeloch, R. Zhong, G. D. Gu, and P. Abbamonte, Phys. Rev. X 9, 041062 (2019), arXiv: 1903.04038.

    Google Scholar 

  334. A. Romero-Bermúdez, A. Krikun, K. Schalm, and J. Zaanen, Phys. Rev. B 99, 235149 (2019), arXiv: 1812.03968.

    Article  ADS  Google Scholar 

  335. T. Andrade, A. Krikun, and A. Romero-Bermúdez, J. High Energ. Phys. 2019(12), 159 (2019).

    Article  ADS  Google Scholar 

  336. V. Rosenhaus, J. Phys. A-Math. Theor. 52, 323001 (2019), arXiv: 1807.03334.

    Article  ADS  Google Scholar 

  337. D. A. Trunin, arXiv: 2002.12187.

  338. S. Sachdev, Phys. Rev. X 5, 041025 (2015), arXiv: 1506.05111.

    Google Scholar 

  339. S. Ryu, and T. Takayanagi, Phys. Rev. Lett. 96, 181602 (2006), arXiv: hep-th/0603001.

    Article  ADS  MathSciNet  Google Scholar 

  340. S. Ryu, and T. Takayanagi, J. High Energ. Phys. 2006(08), 045 (2006), arXiv: hep-th/0605073.

    Article  Google Scholar 

  341. M. Rangamani, and T. Takayanagi, Holographic Entanglement Entropy, In: Lecture Notes in Physics (Springer, 2017).

  342. H. S. Jeong, K. Y. Kim, and M. Nishida, J. High Energ. Phys. 2019(12), 170 (2019).

    Article  ADS  Google Scholar 

  343. L. Susskind, arXiv: 1810.11563.

  344. A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian, and A. Tajdini, arXiv: 2006.06872.

  345. M. R. Mohammadi Mozaffar, A. Mollabashi, and F. Omidi, J. High Energ. Phys. 2016(10), 135 (2016).

    Article  ADS  Google Scholar 

  346. H. Babaei-Aghbolagh, K. Babaei Velni, D. M. Yekta, and H. Mohammadzadeh, arXiv: 2009.01340.

  347. Y. Z. Li, and X. M. Kuang, Nucl. Phys. B 956, 115043 (2020), arXiv: 1911.11980.

    Article  Google Scholar 

  348. Y. T. Zhou, X. M. Kuang, Y. Z. Li, and J. P. Wu, Phys. Rev. D 101, 106024 (2020), arXiv: 1912.03479.

    Article  ADS  MathSciNet  Google Scholar 

  349. Y. Huang, Z. Shi, C. Niu, C. Zhang, and P. Liu, Eur. Phys. J. C 80, 426 (2020), arXiv: 1911.10977.

    Article  ADS  Google Scholar 

  350. S. S. Lee, Phys. Rev. D 79, 086006 (2009), arXiv: 0809.3402.

    Article  ADS  Google Scholar 

  351. H. Liu, J. McGreevy, and D. Vegh, Phys. Rev. D 83, 065029 (2011), arXiv: 0903.2477.

    Article  ADS  Google Scholar 

  352. M. Čubrović, J. Zaanen, and K. Schalm, Science 325, 439 (2009), arXiv: 0904.1993.

    Article  ADS  MathSciNet  Google Scholar 

  353. T. Faulkner, H. Liu, J. McGreevy, and D. Vegh, Phys. Rev. D 83, 125002 (2011).

    Article  ADS  Google Scholar 

  354. M. Edalati, R. G. Leigh, and P. W. Phillips, Phys. Rev. Lett. 106, 091602 (2011), arXiv: 1010.3238.

    Article  ADS  Google Scholar 

  355. H. S. Jeong, K. Y. Kim, Y. Seo, S. J. Sin, and S. Y. Wu, Phys. Rev. D 102, 026017 (2020), arXiv: 1910.11034.

    Article  ADS  MathSciNet  Google Scholar 

  356. S. Cremonini, L. Li, and J. Ren, J. High Energ. Phys. 2018(12), 80 (2018).

    Article  Google Scholar 

  357. S. Cremonini, L. Li, and J. Ren, J. High Energ. Phys. 2019(9), 14 (2019).

    Article  Google Scholar 

  358. F. Balm, A. Krikun, A. Romero-Bermúdez, K. Schalm, and J. Zaanen, J. High Energ. Phys. 2020(1), 151 (2020).

    Article  Google Scholar 

  359. A. Iliasov, A. A. Bagrov, M. I. Katsnelson, and A. Krikun, J. High Energ. Phys. 2020(1), 65 (2020).

    Article  Google Scholar 

  360. S. Mukhopadhyay, and N. Rai, arXiv: 2008.00432.

  361. A. Bagrov, N. Kaplis, A. Krikun, K. Schalm, and J. Zaanen, J. High Energ. Phys. 2016(11), 57 (2016).

    Article  Google Scholar 

  362. J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim, A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watanabe, T. A. Ohki, and K. C. Fong, Science 351, 1058 (2016), arXiv: 1509.04713.

    Article  ADS  Google Scholar 

  363. A. Lucas, J. Crossno, K. C. Fong, P. Kim, and S. Sachdev, Phys. Rev. B 93, 075426 (2016), arXiv: 1510.01738.

    Article  ADS  Google Scholar 

  364. Y. Seo, G. Song, P. Kim, S. Sachdev, and S. J. Sin, Phys. Rev. Lett. 118, 036601 (2017), arXiv: 1609.03582.

    Article  ADS  Google Scholar 

  365. G. Song, Y. Seo, and S.-J. Sin, arXiv: 2007.08143.

  366. F. Ghahari, H. Y. Xie, T. Taniguchi, K. Watanabe, M. S. Foster, and P. Kim, Phys. Rev. Lett. 116, 136802 (2016), arXiv: 1601.05859.

    Article  ADS  Google Scholar 

  367. A. Donos, and J. P. Gauntlett, Phys. Rev. D 87, 126008 (2013), arXiv: 1303.4398.

    Article  ADS  Google Scholar 

  368. H. U. Yee, J. High Energ. Phys. 2009(11), 085 (2009), arXiv: 0908.4189.

    Article  Google Scholar 

  369. K. Y. Kim, B. Sahoo, and H. U. Yee, J. High Energ. Phys. 2010(10), 5 (2010).

    Article  ADS  Google Scholar 

  370. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    Article  ADS  Google Scholar 

  371. Y. C. Kao, and M. Suzuki, Phys. Rev. D 31, 2137 (1985).

    Article  ADS  Google Scholar 

  372. M. D. Bernstein, and T. Lee, Phys. Rev. D 32, 1020 (1985).

    Article  ADS  Google Scholar 

  373. Y. Seo, K. Y. Kim, K. K. Kim, and S. J. Sin, Phys. Lett. B 759, 104 (2016), arXiv: 1512.08916.

    Article  ADS  Google Scholar 

  374. Y. Seo, G. Song, and S. J. Sin, Phys. Rev. B 96, 041104 (2017), arXiv: 1703.07361.

    Article  ADS  Google Scholar 

  375. G. Song, Y. Seo, K. Y. Kim, and S. J. Sin, J. High Energ. Phys. 2019(11), 103 (2019).

    Article  ADS  Google Scholar 

  376. K. K. Kim, K. Y. Kim, Y. Seo, and S. J. Sin, J. High Energ. Phys. 2019(7), 158 (2019).

    Article  Google Scholar 

  377. K. K. Kim, K.-Y. Kim, S.-J. Sin, and Y. Seo, arXiv: 2008.13147.

  378. L. Bao, W. Wang, N. Meyer, Y. Liu, C. Zhang, K. Wang, P. Ai, and F. Xiu, Sci. Rep. 3, 2391 (2013).

    Article  ADS  Google Scholar 

  379. Y. Ni, Z. Zhang, I. C. Nlebedim, R. L. Hadimani, G. Tuttle, and D. C. Jiles, J. Appl. Phys. 117, 17C748 (2015).

    Article  Google Scholar 

  380. P. M. Chesler, and L. G. Yaffe, J. High Energ. Phys. 2014(7), 86 (2014).

    Article  Google Scholar 

  381. B. Withers, J. High Energ. Phys. 2016(10), 8 (2016).

    Article  MathSciNet  Google Scholar 

  382. A. Bagrov, B. Craps, F. Galli, V. Keränen, E. Keski-Vakkuri, and J. Zaanen, Phys. Rev. D 97, 086005 (2018), arXiv: 1708.08279.

    Article  ADS  MathSciNet  Google Scholar 

  383. J. Fernández-Pendás, and K. Landsteiner, Phys. Rev. D 100, 126024 (2019), arXiv: 1907.09962.

    Article  ADS  MathSciNet  Google Scholar 

  384. S. Morales-Tejera, and K. Landsteiner, Phys. Rev. D 102, 106020 (2020), arXiv: 2006.16031.

    Article  ADS  MathSciNet  Google Scholar 

  385. C. Copetti, J. Fernández-Pendás, K. Landsteiner, and E. Megías, J. High Energ. Phys. 2017(9), 4 (2017).

    Article  Google Scholar 

  386. S. Cremonini, U. Gürsoy, and P. Szepietowski, J. High Energ. Phys. 2012(8), 167 (2012).

    Article  Google Scholar 

  387. S. Dubovsky, L. Hui, A. Nicolis, and D. T. Son, Phys. Rev. D 85, 085029 (2012), arXiv: 1107.0731.

    Article  ADS  Google Scholar 

  388. M. Baggioli, and A. Zaccone, Phys. Rev. Lett. 122, 145501 (2019), arXiv: 1810.09516.

    Article  ADS  Google Scholar 

  389. D. Anninos, T. Anous, F. Denef, and L. Peeters, J. High Energ. Phys. 2015(4), 27 (2015).

    Article  Google Scholar 

  390. D. Facoetti, G. Biroli, J. Kurchan, and D. R. Reichman, arXiv: 1906.09228.

  391. A. Lucas, and K. C. Fong, J. Phys.-Condens. Matter 30, 053001 (2018), arXiv: 1710.08425.

    Article  ADS  Google Scholar 

  392. J. Erdmenger, I. Matthaiakakis, R. Meyer, and D. R. Fernández, Phys. Rev. B 98, 195143 (2018), arXiv: 1806.10635.

    Article  ADS  Google Scholar 

  393. A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and N. Marzari, Nat. Commun. 6, 6400 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keun-Young Kim, Li Li or Wei-Jia Li.

Additional information

Matteo Baggioli acknowledges the support of the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01), and of the Spanish MINECO “Centro de Excelencia Severo Ochoa” Program (Grant No. SEV-2012-0249). Keun-Young Kim was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, Information and Communication Technology (ICT) & Future Planning (Grant No. NRF-2017R1A2B4004810), and the Gwangju Institute of Science and Technology (GIST) Research Institute (GRI) grant funded by the GIST in 2020. Li Li is supported in part by the National Natural Science Foundation of China (Grant Nos. 12075298, 11991052, and 12047503). Wei-Jia Li is supported in part by the National Natural Science Foundation of China (Grant No. 11905024), and Dalian University of Technology (Grant No. DUT19LK20). We are grateful to the uncountable number of colleagues which participated with us in the process of understanding all the secrets of the holographic axion model. We thank Teng Ji, Giorgio Frangi, Hyun-Sik Jeong, Xi-Jing Wang and Yongjun An for useful comments and helping proof-reading an early version of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baggioli, M., Kim, KY., Li, L. et al. Holographic axion model: A simple gravitational tool for quantum matter. Sci. China Phys. Mech. Astron. 64, 270001 (2021). https://doi.org/10.1007/s11433-021-1681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1681-8

PACS number(s)

Navigation