Skip to main content
Log in

Recycling Natural Fibre to Superabsorbent Hydrogel Composite for Conservation of Irrigation Water in Semi-arid Regions

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Effective management of the issues related to increasing water scarcity in semi-arid regions needs special attention to minimize the negative influence of water stress conditions and prevent soil degradation to ensure global food security.

Methods

The present study develops an eco-friendly, low-cost superabsorbent hydrogel composite (SHC) through recycling natural fibre using graft polymerization method. Effectiveness of the synthesized SHC for conservation of irrigation water was investigated by measuring its water absorbency in different salt, and pH solutions, reswelling capacity, and the soil–water retention curve (SWRC) of SHC amended soil.

Results

The synthesized SHC showed water absorbency of 342 g/g in distilled water, indicating its suitability for agricultural application. The SHC showed excellent re-swelling characteristics for more than eight alternate wetting–drying cycles. The sensitivity of SHC to different inorganic salt solutions was investigated, which showed its water absorbency higher than 90 g/g at the maximum salinity level permitted for plant growth. The addition of SHC in silt loam soil showed an increase in water availability of 56%, 81%, and 125%, with the SHC concentrations of 0.1%, 0.2%, and 0.4%, respectively.

Conclusion

The addition of SHC had reduced the irrigation water requirement by 29% as compared to bare soil at an optimum application rate of 0.2%. The study promotes the use of synthesized SHC for the conservation of irrigation water, as well as soil ecosystem, with an additional advantage of contributing to the mass utilization of waste materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Chartzoulakis, K., Bertaki, M.: Sustainable water management in agriculture under climate change. Agri. Agric. Sci. Procedia 4, 88–98 (2015). https://doi.org/10.1016/j.aaspro.2015.03.011

    Article  Google Scholar 

  2. Xu, C., McDowell, N.G., Fisher, R.A., Wei, L., Sevanto, S., Christoffersen, B.O., Weng, E., Middleton, R.S.: Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9(12), 948–953 (2019). https://doi.org/10.1038/s41558-019-0630-6

    Article  Google Scholar 

  3. Geng, S.M., Yan, D.H., Zhang, T.X., Weng, B.S., Zhang, Z.B., Qin, T.L.: Effects of drought stress on agriculture soil. Nat. Hazards 75(2), 1997–2011 (2015). https://doi.org/10.1007/s11069-014-1409-8

    Article  Google Scholar 

  4. Paneque, P.: Drought management strategies in Spain. Water 7, 6689–6701 (2015). https://doi.org/10.3390/w7126655

    Article  Google Scholar 

  5. Saha, A., Sekharan, S., Manna, U.: Superabsorbent hydrogel (SAH) as a soil amendment for drought management: a review. Soil and Tillage Research 204, 104736 (2020). https://doi.org/10.1016/j.still.2020.104736

    Article  Google Scholar 

  6. Al-Jabari, M., Ghyadah, R.A., Alokely, R.: Recovery of hydrogel from baby diaper wastes and its application for enhancing soil irrigation management. J. Environ. Manage. 239, 255–261 (2019). https://doi.org/10.1016/j.jenvman.2019.03.087

    Article  Google Scholar 

  7. Sekharan, S., Gadi, V.K., Bordoloi, S., Saha, A., Kumar, H., Hazra, B., Garg, A.: Sustainable geotechnics: a bio-geotechnical perspective. Front. Geotech. Eng., 313–331 (2019). Springer, Singapore. https://doi.org/10.1007/978-981-15-0886-8_15

    Chapter  Google Scholar 

  8. Feng, D., Bai, B., Ding, C., Wang, H., Suo, Y.: Synthesis and swelling behaviors of yeast-g-poly (acrylic acid) superabsorbent co-polymer. Ind. Eng. Chem. Res. 53(32), 12760–12769 (2014). https://doi.org/10.1021/ie502248n

    Article  Google Scholar 

  9. Saha, A., Rattan, B., Sekharan, S., Manna, U.: Quantifying the interactive effect of water absorbing polymer (WAP)-soil texture on plant available water content and irrigation frequency. Geoderma 368, 114310 (2020). https://doi.org/10.1016/j.geoderma.2020.114310

    Article  Google Scholar 

  10. Koupai, J.A., Eslamian, S.S., Kazemi, J.A.: Enhancing the available water content in unsaturated soil zone using hydrogel, to improve plant growth indices. Ecohydrol. Hydrobiol. 8(1), 67–75 (2008). https://doi.org/10.2478/v10104-009-0005-0

    Article  Google Scholar 

  11. Spagnol, C., Rodrigues, F.H., Pereira, A.G., Fajardo, A.R., Rubira, A.F., Muniz, E.C.: Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly (acrylic acid). Carbohyd. Polym. 87(3), 2038–2045 (2012). https://doi.org/10.1016/j.carbpol.2011.10.017

    Article  Google Scholar 

  12. Guilherme, M.R., Aouada, F.A., Fajardo, A.R., Martins, A.F., Paulino, A.T., Davi, M.F., Rubira, A.F., Muniz, E.C.: Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review. Eur. Polymer J. 72, 365–385 (2015). https://doi.org/10.1016/j.eurpolymj.2015.04.017

    Article  Google Scholar 

  13. Zhang, L., Loh, K.C., Sarvanantharajah, S., Shen, Y., Tong, Y.W., Wang, C.H., Dai, Y.: Recovery of nitrogen and phosphorus nutrition from anaerobic digestate by natural superabsorbent fiber-based adsorbent and reusing as an environmentally friendly slow-release fertilizer for horticultural plants. Waste and Biomass Valorization 11(10), 5223–5237 (2020). https://doi.org/10.1007/s12649-019-00915-3

    Article  Google Scholar 

  14. Thakur, V.K., Thakur, M.K.: Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd. Polym. 109, 102–117 (2014). https://doi.org/10.1016/j.carbpol.2014.03.039

    Article  Google Scholar 

  15. Wattie, B., Dumont, M.J., Lefsrud, M.: Synthesis and properties of feather keratin-based superabsorbent hydrogels. Waste and Biomass Valorization 9(3), 391–400 (2018). https://doi.org/10.1007/s12649-016-9773-0

    Article  Google Scholar 

  16. de Vasconcelos, M.C., Gomes, R.F., Sousa, A.A., Moreira, F.J., Rodrigues, F.H., Fajardo, A.R., Neto, L.G.P.: Superabsorbent hydrogel composite based on starch/rice husk ash as a soil conditioner in melon (cucumis melo L.) seedling culture. J. Polym. Environ. 28(1), 131–140 (2020). https://doi.org/10.1007/s10924-019-01593-x

    Article  Google Scholar 

  17. Abou-Baker, N.H., Ouis, M., Abd-Eladl, M., Ibrahim, M.M.: Transformation of lignocellulosic biomass to cellulose-based hydrogel and agriglass to improve beans yield. Waste Biomass Valor. 11(7), 3537–3551 (2020). https://doi.org/10.1007/s12649-019-00699-6

    Article  Google Scholar 

  18. Dhar, S.A., Sakib, T.U., Hilary, L.N.: Effects of pyrolysis temperature on production and physicochemical characterization of biochar derived from coconut fiber biomass through slow pyrolysis process. Biomass Conv. Bioref. (2020). https://doi.org/10.1007/s13399-020-01116-y

    Article  Google Scholar 

  19. Prakongkep, N., Gilkes, R.J., Wiriyakitnateekul, W.: Forms and solubility of plant nutrient elements in tropical plant waste biochars. J. Plant Nutr. Soil Sci. 178(5), 732–740 (2015). https://doi.org/10.1002/jpln.201500001

    Article  Google Scholar 

  20. ASTM D854: Standard test method for specific gravity of soil solids by water pycnometer. ASTM international: WestConshohocken. PA, USA (2014)

  21. ASTM D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM international: WestConshohocken. PA, USA (2017)

  22. ASTM D7503: Standard Test Method for Measuring the Exchange Complex and Cation Exchange Capacity of Inorganic Fine-Grained Soils. ASTM international: West Conshohocken. PA, USA (2018).

  23. Bao, Y., Ma, J., Li, N.: Synthesis and swelling behaviors of sodium carboxymethyl cellulose-g-poly (AA-co-AM-co-AMPS)/MMT superabsorbent hydrogel. Carbohyd. Polym. 84(1), 76–82 (2011). https://doi.org/10.1016/j.carbpol.2010.10.061

    Article  Google Scholar 

  24. Zhang, M., Cheng, Z., Zhao, T., Liu, M., Hu, M., Li, J.: Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran–poly (acrylic acid) superabsorbent hydrogel. J. Agric. Food Chem. 62(35), 8867–8874 (2014). https://doi.org/10.1021/jf5021279

    Article  Google Scholar 

  25. Saha, A., Sekharan, S., Manna, U.: Evaluation of capacitance sensor for suction measurement in silty clay loam. Geotech. Geol. Eng. 38(4), 4319–4331 (2020). https://doi.org/10.1007/s10706-020-01297-3

    Article  Google Scholar 

  26. Andry, H., Yamamoto, T., Irie, T., Moritani, S., Inoue, M., Fujiyama, H.: Water retention, hydraulic conductivity of hydrophilic polymers in sandy soil as affected by temperature and water quality. J. Hydrol. 373(1–2), 177–183 (2009). https://doi.org/10.1016/j.jhydrol.2009.04.020

    Article  Google Scholar 

  27. Agaba, H., Baguma Orikiriza, L.J., Osoto Esegu, J.F., Obua, J., Kabasa, J.D., Hüttermann, A.: Effects of hydrogel amendment to different soils on plant available water and survival of trees under drought conditions. Clean-Soil, Air, Water 38(4), 328–335 (2010). https://doi.org/10.1002/clen.200900245

    Article  Google Scholar 

  28. Dorraji, S.S., Golchin, A., Ahmadi, S.: The effects of hydrophilic polymer and soil salinity on corn growth in sandy and loamy soils. Clean-Soil, Air, Water 38(7), 584–591 (2010). https://doi.org/10.1002/clen.201000017

    Article  Google Scholar 

  29. Louf, J.F., Lu, N.B., O’Connell, M.G., Cho, H.J., Datta, S.S.: Under pressure: Hydrogel swelling in a granular medium. Sci. Adv. 7(7), 2711 (2021). https://doi.org/10.1126/sciadv.abd2711

    Article  Google Scholar 

  30. Misiewicz, J., Lejcuś, K., Dąbrowska, J., Marczak, D.: The characteristics of absorbency under load (AUL) for superabsorbent and soil mixtures. Sci. Rep. 9(1), 1–9 (2019). https://doi.org/10.1038/s41598-019-54744-4

    Article  Google Scholar 

  31. Lejcuś, K., Śpitalniak, M., Dąbrowska, J.: Swelling behaviour of superabsorbent polymers for soil amendment under different loads. Polymers 10(3), 271 (2019). https://doi.org/10.3390/polym10030271

    Article  Google Scholar 

  32. Abraham, E., Deepa, B., Pothen, L.A., Cintil, J., Thomas, S., John, M.J., Anandjiwala, R., Narine, S.S.: Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohyd. Polym. 92(2), 1477–1483 (2013). https://doi.org/10.1016/j.carbpol.2012.10.056

    Article  Google Scholar 

  33. Saha, A., Sekharan, S., Manna, U., Sahoo, L.: Transformation of non-water sorbing fly ash to a water sorbing material for drought management. Sci. Rep. 10(1), 1–16 (2020). https://doi.org/10.1038/s41598-020-75674-6

    Article  Google Scholar 

  34. Zhang, J.P., Zhang, F.S.: Recycling waste polyethylene film for amphoteric superabsorbent resin synthesis. Chem. Eng. J. 331, 169–176 (2018). https://doi.org/10.1016/j.cej.2017.08.058

    Article  Google Scholar 

  35. Cândido, J.D.S., Leitao, R.C., Ricardo, N.M., Feitosa, J.P., Muniz, E.C., Rodrigues, F.H.: Hydrogels composite of poly (acrylamide-co-acrylate) and rice husk ash I Synthesis and characterization. J. Appl. Polym. Sci. 123(2), 879–887 (2012). https://doi.org/10.1002/app.34528

    Article  Google Scholar 

  36. Munns, R., Tester, M.: Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008). https://doi.org/10.1146/annurev.arplant.59.032607.092911

    Article  Google Scholar 

  37. Zhu, J.K.: Plant salt stress. In: Encyclopedia of Life Sciences, Wiley (2007)

  38. Mahdavinia, G.R., Pourjavadi, A., Hosseinzadeh, H., Zohuriaan, M.J.: Modified chitosan superabsorbent hydrogels from poly (acrylic acid-co-acrylamide) grafted chitosan with salt-and pH-responsiveness properties. Eur. Polymer J. 40(7), 1399–1407 (2004). https://doi.org/10.1016/j.eurpolymj.2004.01.039

    Article  Google Scholar 

  39. Fernández, F.G., Hoeft, R.G.: Managing soil pH and crop nutrients. Illinois Agronomy Handbook 24, 91–112 (2009)

    Google Scholar 

  40. Wei, Y., Durian, D.J.: Effect of hydrogel particle additives on water-accessible pore structure of sandy soils: A custom pressure plate apparatus and capillary bundle model. Phys. Rev. E 87(5), 053013 (2013). https://doi.org/10.1103/PhysRevE.87.053013

    Article  Google Scholar 

  41. Rahmati, M., Pohlmeier, A., Abasiyan, S.M.A., Weihermüller, L., Vereecken, H.: Water Retention and Pore Size Distribution of a Biopolymeric-Amended Loam Soil. Vadose Zone Journal 18(1), 1–13 (2019). https://doi.org/10.2136/vzj2018.11.0205

    Article  Google Scholar 

  42. Colman, E.A.: A laboratory procedure for determining the field capacity of soils. Soil Sci. 63(4), 277–284 (1947)

    Article  Google Scholar 

  43. ASTM D422–63: Standard test method for particle-size analysis of soils. ASTM International: West Conshohocken. PA, USA (2007)

    Google Scholar 

  44. ASTM D2487: Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM international: West Conshohocken. PA, USA (2011)

Download references

Acknowledgements

The authors thankfully acknowledge the Central Instrument Facility (CIF) and Department of Chemistry, Indian Institute of Technology Guwahati for providing the necessary support required for this research work.

Funding

The authors received no specific funding for carrying out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS, SS; Material preparation: AS; Formal analysis and investigation: AS, CBG; Writing—original draft preparation: AS; Writing—review and editing: SS; Supervision: SS.

Corresponding author

Correspondence to Abhisekh Saha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, A., Gupt, C.B. & Sekharan, S. Recycling Natural Fibre to Superabsorbent Hydrogel Composite for Conservation of Irrigation Water in Semi-arid Regions. Waste Biomass Valor 12, 6433–6448 (2021). https://doi.org/10.1007/s12649-021-01489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01489-9

Keywords

Navigation