Skip to main content
Log in

Influence of Sample Tilt and Applied Load on Microscratch Behavior of Copper Under a Spherical Diamond Indenter

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Microscratch test with a spherical indenter was carried out on copper under different tilt conditions and applied loads. Influence of surface slope and applied load on scratch responses such as friction coefficient, residual groove width, penetration depth was quantified by simple (e.g., linear, quadratic, and power-law) expressions. Apparent friction coefficient for non-tilt condition can be obtained by correcting the results measured for a prior known surface slope. Contact area is believed to be confined in the front side of the indenter with pile-up of material contributing to the horizontally projected area and a minor segment for the vertically projected area. The radius of spherical indenter can be calibrated on a reference material from residual groove width and penetration depth data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data and material are available from the corresponding author on request via email: mingliuUK@gmail.com or mingliu@fzu.edu.cn.

References

  1. Menezes, P.L., Kailas, S.V.: Effect of roughness parameter and grinding angle on coefficient of friction when sliding of Al–Mg alloy over EN8 steel. J. Tribol. 128, 10–14 (2006)

    Article  CAS  Google Scholar 

  2. Zhang, X., Li, Z., Wang, J.: Friction prediction of rolling-sliding contact in mixed EHL. Measurement 100, 262–269 (2017)

    Article  Google Scholar 

  3. Sabat, R.K., SuryaPavan, M.V., Aakash, D.S., Kumar, M., Sahoo, S.K.: Mechanism of texture and microstructure evolution during warm rolling of Ti–6Al–4V alloy. Philos. Mag. 98, 2562–2581 (2018)

    Article  CAS  Google Scholar 

  4. Liu, C.S., Zheng, Z.Y., Wu, D.W., Ye, M.S., Gao, P., Peng, Y.G., et al.: Sliding friction and wear properties of CN X /TiN composite films. Tribol. Int. 37, 721–725 (2004)

    Article  CAS  Google Scholar 

  5. Iliuc, I.: Wear and micropitting of steel ball sliding against TiN coated steel plate in dry and lubricated conditions. Tribol. Int. 39, 607–615 (2006)

    Article  CAS  Google Scholar 

  6. Ceschini, L., Palombarini, G., Sambogna, G., Firrao, D., Scavino, G., Ubertalli, G.: Friction and wear behaviour of sintered steels submitted to sliding and abrasion tests. Tribol. Int. 39, 748–755 (2006)

    Article  CAS  Google Scholar 

  7. Jianxin, D., Jianhua, L., Jinlong, Z., Wenlong, S., Ming, N.: Friction and wear behaviors of the PVD ZrN coated carbide in sliding wear tests and in machining processes. Wear 264, 298–307 (2008)

    Article  CAS  Google Scholar 

  8. Archard, J.F.: Elastic deformation and the laws of friction. Procrsoclonda 24, 190–205 (1957)

    Google Scholar 

  9. Menezes, P.L., Kailas, S.V.: Effect of surface topography on friction and transfer layer during sliding. Tribology 3, 25–30 (2008)

    Google Scholar 

  10. Moore, M.A., King, F.S.: Abrasive wear of brittle solids. Wear 60, 123–140 (1980)

    Article  CAS  Google Scholar 

  11. Hiratsuka, K., Enomoto, A., Sasada, T.: Friction and wear of Al2O3, ZrO2 and SiO2 rubbed against pure metals. Wear 153, 361–373 (1992)

    Article  CAS  Google Scholar 

  12. Mokhtar, M.O.A., Zaki, M., Shawki, G.S.A.: Correlation between the frictional behaviour and the physical properties of metals. Wear 65, 29–34 (1980)

    Article  CAS  Google Scholar 

  13. Yoon, E.S., Kong, H., Kwon, O.K., Oh, J.E.: Evaluation of frictional characteristics for a pin-on-disk apparatus with different dynamic parameters. Wear s 203–204, 341–349 (1997)

    Article  Google Scholar 

  14. Liu, Y., Wang, W., Zhang, H., Zhao, Z.: Solution of temperature distribution under frictional heating with consideration of material inhomogeneity. Tribol. Int. 126, 80–96 (2018)

    Article  Google Scholar 

  15. Udaykant Jadav, P., Amali, R., Adetoro, O.B.: Analytical friction model for sliding bodies with coupled longitudinal and transverse vibration. Tribol. Int. 126, 240–248 (2018)

    Article  Google Scholar 

  16. Lafaye, S., Gauthier, C., Schirrer, R.: The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity. Tribol. Lett. 21, 95–99 (2006)

    Article  Google Scholar 

  17. Thakre, A.A., Singh, A.K.: Frictional study of the soft and hard solid interface using response surface methodology. J. Tribol. 140, 1601 (2018)

    Article  CAS  Google Scholar 

  18. Zhang, N., Li, C., Lu, A., Chen, X., Liu, D., Zhu, E.: Experimental studies on the basic friction angle of planar rock surfaces by tilt test. J. Testing Eval. 47, 256–283 (2019)

    CAS  Google Scholar 

  19. Wu, J., Wu, G., Kou, X., Lu, Z., Zhang, G., Wu, Z.: Probing tribological behaviors of Cr-DLC in corrosion solution by tailoring sliding interface. Tribol. Lett. 68, 95 (2020)

    Article  CAS  Google Scholar 

  20. Liu, M., Yang, F.: Finite element analysis of the indentation-induced delamination of Bi-layer structures. J. Comput. Theor. Nanosci. 9, 235–238 (2012)

    Article  Google Scholar 

  21. Liu, M., Yang, F.: Three-dimensional finite element simulation of the Berkovich indentation of a transversely isotropic piezoelectric material: effect of material orientation. Modell Simul. Mater. Sci. Eng. 21, 045014 (2013)

    Article  Google Scholar 

  22. Subhash, G., Zhang, W.: Investigation of the overall friction coefficient in single-pass scratch test. Wear 252, 123–134 (2002)

    Article  CAS  Google Scholar 

  23. Liu, D., Wang, Q., Zhang, D., Wang, J., Zhang, X.: Torsional friction behavior of contact interface between PEEK and CoCrMo in calf serum. J. Tribol. 141, 011612 (2018)

    Google Scholar 

  24. Shi, H., Atkinson, M.: A friction effect in low-load hardness testing of copper and aluminium. J. Mater. Sci 25, 2111–2114 (1990)

    Article  CAS  Google Scholar 

  25. Pelletier, H., Gauthier, C., Schirrer, R.: Influence of the friction coefficient on the contact geometry during scratch onto amorphous polymers. Wear 268, 1157–1169 (2010)

    Article  CAS  Google Scholar 

  26. Zhan, J., Fard, M.: Effects of helix angle, mechanical errors, and coefficient of friction on the time-varying tooth-root stress of helical gears. Measurement 118, 135–146 (2018)

    Article  Google Scholar 

  27. Niemczewska-Wójcik, M., Wójcik, A.: The machining process and multi-sensor measurements of the friction components of total hip joint prosthesis. Measurement 116, 56–67 (2018)

    Article  Google Scholar 

  28. Nieminen, I., Andersson, P., Holmberg, K.: Friction measurement by using a scratch test method. Wear 130, 167–178 (1989)

    Article  Google Scholar 

  29. Xie, Y., Hawthorne, H.M.: On the possibility of evaluating the resistance of materials to wear by ploughing using a scratch method. Wear 240, 65–71 (2000)

    Article  CAS  Google Scholar 

  30. Jardret, V., Zahouani, H., Loubet, J.L., Mathia, T.G.: Understanding and quantification of elastic and plastic deformation during a scratch test. Wear 218, 8–14 (1998)

    Article  CAS  Google Scholar 

  31. Liu, Z., Sun, J., Shen, W.: Study of plowing and friction at the surfaces of plastic deformed metals. Tribol. Int. 35, 511–522 (2002)

    Article  CAS  Google Scholar 

  32. Kumar, A., Staedler, T., Jiang, X.: Effect of normal load and roughness on the nanoscale friction coefficient in the elastic and plastic contact regime. Beilstein J. Nanotechnol. 4, 66–71 (2013)

    Article  CAS  Google Scholar 

  33. Bhushan, B., Kulkarni, A.V.: Effect of normal load on microscale friction measurements. Thin Solid Films 278, 49–56 (1996)

    Article  CAS  Google Scholar 

  34. Dube, N.B., Hutchings, I.M.: Influence of particle fracture in the high-stress and low-stress abrasive wear of steel. Wears 233–235, 246–256 (1999)

    Article  Google Scholar 

  35. Nahvi, S.M., Shipway, P.H., Mccartney, D.G.: Particle motion and modes of wear in the dry sand–rubber wheel abrasion test. Wear 267, 2083–2091 (2009)

    Article  CAS  Google Scholar 

  36. Stevenson, A.N.J., Hutchings, I.M.: Development of the dry sand/rubber wheel abrasion test. Wear 195, 232–240 (1996)

    Article  CAS  Google Scholar 

  37. Salah, N., Abdel-wahab, M.S., Habib, S.S., Khan, Z.H.: Lubricant additives based on carbon nanotubes produced from carbon-rich fly ash. Tribol. Trans. 60, 166–175 (2017)

    Article  CAS  Google Scholar 

  38. Gao, C., Liu, M.: Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter. Tribol. Lett. 67, 8 (2019)

    Article  CAS  Google Scholar 

  39. Maegawa, S., Itoigawa, F., Nakamura, T.: Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane. Tribol. Int. 92, 335–343 (2015)

    Article  CAS  Google Scholar 

  40. Ghasemi, R., Johansson, J., Ståhl, J.-E., Jarfors, A.E.W.: Load effect on scratch micro-mechanisms of solution strengthened compacted graphite irons. Tribol. Int. 133, 182–192 (2019)

    Article  CAS  Google Scholar 

  41. Riehm, P., Unrau, H.J., Gauterin, F.: A model based method to determine rubber friction data based on rubber sample measurements. Tribol. Int. 127, 37–46 (2018)

    Article  Google Scholar 

  42. Yoshizumi, F., Tani, H., Sanda, S.: Simulation of the friction coefficient of paper-based wet clutch with wavy separators. J. Tribol. 141, 011702-011702–011713 (2018)

    Google Scholar 

  43. Tiwary, C.S., Prakash, J., Chakraborty, S., Mahapatra, D.R., Chattopadhyay, K.: Subsurface deformation studies of aluminium during wear and its theoretical understanding using molecular dynamics. Philos. Mag. 98, 2680–2700 (2018)

    Article  CAS  Google Scholar 

  44. Jeon, S., Thundat, T., Braiman, Y.: Effect of normal vibration on friction in the atomic force microscopy experiment. Appl. Phys. Lett. 88, 214102-214102–214103 (2006)

    Article  Google Scholar 

  45. Hu, Z.M., Dean, T.A.: A study of surface topography, friction and lubricants in metalforming. Int. J. Mach. Tools Manuf. 40, 1637–1649 (2000)

    Article  Google Scholar 

  46. Zhang, H., Takeuchi, Y., Chong, W.W.F., Mitsuya, Y., Fukuzawa, K., Itoh, S.: Simultaneous in situ measurements of contact behavior and friction to understand the mechanism of lubrication with nanometer-thick liquid lubricant films. Tribol. Int. 127, 138–146 (2018)

    Article  CAS  Google Scholar 

  47. Zhou, C., Hu, B., Qian, X., Han, X.: A novel prediction method for gear friction coefficients based on a computational inverse technique. Tribol. Int. 127, 200–208 (2018)

    Article  Google Scholar 

  48. Wang, J., Ma, L., Li, W., Zhou, Z.: Influence of different lubricating fluids on friction trauma of small intestine during enteroscopy. Tribol. Int. 126, 29–38 (2018)

    Article  CAS  Google Scholar 

  49. Chun, L., Zhongyi, M., Fubao, Z., Chen, K., Haiyang, Y.: The wear and friction characters of polycrystalline diamond under wetting conditions. J. Tribol. 141, 021607 (2018)

    Google Scholar 

  50. Alakhramsing, S.S., de Rooij, M.B., Akchurin, A., Schipper, D.J., van Drogen, M.: A mixed-TEHL analysis of cam-roller contacts considering roller slip: on the influence of roller-pin contact friction. J. Tribol. 141, 011503-011503–011515 (2018)

    Google Scholar 

  51. AhmedAli, M.K., Xianjun, H., Essa, F.A., Abdelkareem, M.A.A., Elagouz, A., Sharshir, S.W.: Friction and wear reduction mechanisms of the reciprocating contact interfaces using nanolubricant under different loads and speeds. J. Tribol. 140, 051606-051606–051610 (2018)

    Google Scholar 

  52. Cozza, R.C.: Influence of the normal force, abrasive slurry concentration and abrasive wear modes on the coefficient of friction in ball-cratering wear tests. Tribol. Int. 70, 52–62 (2014)

    Article  CAS  Google Scholar 

  53. Li, D., Liu, Y., Deng, Y., Fang, M., Wu, D.: The effect of different temperatures on friction and wear properties of CFRPEEK against AlSi 431 steel under water lubrication. Tribol. Trans. 61, 357–366 (2018)

    Article  CAS  Google Scholar 

  54. Kato, K.: Wear in relation to friction—a review. Wear 241, 151–157 (2000)

    Article  CAS  Google Scholar 

  55. Rymuza, Z.: Energy concept of the coefficient of friction. Wear 199, 187–196 (1996)

    Article  CAS  Google Scholar 

  56. Hartung, F., Kienle, R., Götz, T., Winkler, T., Ressel, W., Eckstein, L., et al.: Numerical determination of hysteresis friction on different length scales and comparison to experiments. Tribol. Int. 127, 165–176 (2018)

    Article  Google Scholar 

  57. Saravanan, P., Selyanchyn, R., Watanabe, M., Fujikawa, S., Tanaka, H., Lyth, S.M., et al.: Ultra-low friction of polyethylenimine/molybdenum disulfide (PEI/MoS2)15 thin films in dry nitrogen atmosphere and the effect of heat treatment. Tribol. Int. 127(255), 263 (2018)

    Google Scholar 

  58. Menezes, P.L., Kishore Kailas, S.V., Bobji, M.S.: Influence of tilt angle of plate on friction and transfer layer—A study of aluminium pin sliding against steel plate. Tribol. Int. 43, 897–905 (2010)

    Article  CAS  Google Scholar 

  59. Staph, H.E., Ku, P.M., Carper, H.J.: Effect of surface roughness and surface texture on scuffing. Mech. Mach. Theory 8, 197–208 (1973)

    Article  Google Scholar 

  60. Lakshmipathy, R., Sagar, R.: Effect of die surface topography on die-work interfacial friction in open die forging. Int. J. Mach. Tools Manuf. 32, 685–693 (1992)

    Article  Google Scholar 

  61. Menezes, P.L., KishoreKailas, S.V.: Studies on friction and transfer layer using inclined scratch. Tribol. Int. 39, 175–183 (2006)

    Article  CAS  Google Scholar 

  62. Määttä, A., Vuoristo, P., Mäntylä, T.: Friction and adhesion of stainless steel strip against tool steels in unlubricated sliding with high contact load. Tribol. Int. 34, 779–786 (2001)

    Article  Google Scholar 

  63. Malayappan, S., Narayanasamy, R.: An experimental analysis of upset forging of aluminium cylindrical billets considering the dissimilar frictional conditions at flat die surfaces. Int. J. Adv. Manuf. Technol. 23, 636–643 (2004)

    Article  Google Scholar 

  64. Wakuda, M., Yamauchi, Y., Kanzaki, S., Yasuda, Y.: Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254, 356–363 (2003)

    Article  CAS  Google Scholar 

  65. Tripathi, K., Gyawali, G., Amanov, A., Lee, S.W.: Synergy effect of ultrasonic nanocrystalline surface modification and laser surface texturing on friction and wear behavior of graphite cast iron. Tribol. Trans. 60, 226–237 (2017)

    Article  CAS  Google Scholar 

  66. Seo, N.J., Armstrong, T.J.: Friction coefficients in a longitudinal direction between the finger pad and selected materials for different normal forces and curvatures. Ergonomics 52, 609–616 (2009)

    Article  Google Scholar 

  67. Gao, C., Yao, L., Liu, M.: Measurement of sample tilt by residual imprint morphology of Berkovich indenter. J. Testing Eval. 48, 4 (2020)

    Google Scholar 

  68. Sinha, S.K., Lim, D.B.J.: Effects of normal load on single-pass scratching of polymer surfaces. Wear 260, 751–765 (2006)

    Article  CAS  Google Scholar 

  69. Feng, B.: Tribology behavior on scratch tests: Effects of yield strength. Friction 5, 108–114 (2017)

    Article  Google Scholar 

  70. Gong, F., Guo, B.: Effects of influencing factors on friction coefficient in microsheet forming. Mater. Res. Innovations 17, 7–11 (2013)

    Article  CAS  Google Scholar 

  71. Xu, M., Li, L., Wang, M., Luo, B.: Effects of surface roughness and wood grain on the friction coefficient of wooden materials for wood-wood frictional pair. Tribol. Trans. 57, 871–878 (2014)

    Article  CAS  Google Scholar 

  72. Han, L., Zhang, D.-W., Wang, F.-J.: Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation. Tribol. Trans. 56, 49–57 (2013)

    Article  CAS  Google Scholar 

  73. Gao, C., Proudhon, H., Liu, M.: Three-dimensional finite element analysis of shallow indentation of rough strain-hardening surface. Friction 7, 587–602 (2019)

    Article  Google Scholar 

  74. Jiang, H., Browning, R., Fincher, J., Gasbarro, A., Jones, S., Sue, H.-J.: Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins. Appl. Surf. Sci. 254, 4494–4499 (2008)

    Article  CAS  Google Scholar 

  75. Menezes, P.L., Kishore Kailas, S.V.: Studies on friction and transfer layer: role of surface texture. Tribol. Lett. 24, 265–273 (2006)

    Article  CAS  Google Scholar 

  76. Torrance, A.A.: Using profilometry for the quantitative assessment of tribological function: PC-based software for friction and wear prediction. Wear 181–183, 397–404 (1995)

    Article  Google Scholar 

  77. Bhushan, B., Nosonovsky, M.: Scale effects in dry and wet friction, wear, and interface temperature. Nanotechnology 15, 749 (2004)

    Article  CAS  Google Scholar 

  78. Gao, C., Yao, L., Zheng, R., Liu, M.: Effect of sample tilt on spherical indentation of an elastic solid. J. Test. Eval. 47, 2596–2612 (2019)

    Article  Google Scholar 

  79. Black, A.J., Kopalinsky, E.M., Oxley, P.L.B.: An investigation of the different regimes of deformation which can occur when a hard wedge slides over a soft surface: the influence of wedge angle, lubrication and prior plastic working of the surface. Wear 123, 97–114 (1988)

    Article  CAS  Google Scholar 

  80. Pondicherry, K., Rajaraman, D., Galle, T., Hertelé, S., Fauconnier, D., De Baets, P.: Optimization and validation of a load-controlled numerical model for single asperity scratch. Tribol. Lett. 68, 45 (2020)

    Article  Google Scholar 

  81. Maas, P., Mizumoto, Y., Kakinuma, Y., Min, S.: Anisotropic brittle-ductile transition of monocrystalline sapphire during orthogonal cutting and nanoindentation experiments. Nanotechnol. Precis Eng. 1, 157–171 (2018)

    Article  Google Scholar 

  82. Tseng, A.A.: A comparison study of scratch and wear properties using atomic force microscopy. Appl Surf Sci 256, 4246–4252 (2010)

    Article  CAS  Google Scholar 

  83. (!!! INVALID CITATION !!! [63–66]).

  84. Ranjan, P., Balasubramaniam, R., Jain, V.K.: Investigations into the mechanism of material removal and surface modification at atomic scale on stainless steel using molecular dynamics simulation. Phil. Mag. 98, 1437–1469 (2018)

    Article  CAS  Google Scholar 

  85. Liu, M., Li, S., Gao, C.: Fracture toughness measurement by micro-scratch tests with conical indenter. Tribology 39, 556–564 (2019)

    Google Scholar 

  86. Tabor, A.: The physical meaning of indentation and scratch hardness. Br. J. Appl. Phys. 7, 159–166 (1956)

    Article  Google Scholar 

  87. Williams, J.A.: Analytical models of scratch hardness. Tribol. Int. 29, 675–694 (1996)

    Article  CAS  Google Scholar 

  88. Huang, L., Xu, K., Lu, J., Guelorget, B., Chen, H.: Nano-scratch and fretting wear study of DLC coatings for biomedical application. Diam. Relat. Mater. 10, 1448–1456 (2001)

    Article  CAS  Google Scholar 

  89. Wu, T.W.: Microscratch and load relaxation tests for ultra-thin films. J Mater Res 6, 407–426 (1991)

    Article  Google Scholar 

  90. Venkataraman, S., Kohlstedt, D.L., Gerberich, W.W.: Microscratch analysis of the work of adhesion for Pt thin films on NiO. J. Mater. Res. 7, 1126–1132 (1992)

    Article  CAS  Google Scholar 

  91. Li, X., Bhushan, B.: Micro/nanomechanical and tribological characterization of ultrathin amorphous carbon coatings. J. Mater. Res. 14, 2328–2337 (1999)

    Article  CAS  Google Scholar 

  92. Yan, J., Lindo, A., Schwaiger, R., Hodge, A.M.: Sliding wear behavior of fully nanotwinned Cu alloys. Friction 7, 260–267 (2018)

    Article  CAS  Google Scholar 

  93. Wei, Y., Nixon, W., Shi, Z.: Evaluation of wear resistance of snow plow blade cutting edges using the scratch test method. J. Test. Eval. 26, 527–531 (1998)

    Article  Google Scholar 

  94. Yazdi, R., Ghasemi, H.M., Abedini, M., Wang, C., Neville, A.: Oxygen diffusion layer on Ti–6Al–4V alloy: scratch and dry wear resistance. Tribol. Lett. 67, 101 (2019)

    Article  CAS  Google Scholar 

  95. Sakamoto, T., Tsukizoe, T.: Friction and prow formation in a scratch process of copper by a diamond cone. Wear 44, 393–403 (1977)

    Article  Google Scholar 

  96. Zhang, F., Meng, B., Geng, Y., Zhang, Y., Li, Z.: Friction behavior in nanoscratching of reaction bonded silicon carbide ceramic with Berkovich and sphere indenters. Tribol. Int. 97, 21–30 (2016)

    Article  CAS  Google Scholar 

  97. Wo, P.C., Ngan, A.H.W.: Incipient plasticity during nano-scratch in Ni3Al. Philos. Mag. 84, 3145–3157 (2004)

    Article  CAS  Google Scholar 

  98. Deng, H., Scharf, T.W., Barnard, J.A.: Adhesion assessment of silicon carbide, carbon, and carbon nitride ultrathin overcoats by nanoscratch techniques. J. Appl. Phys. 81, 5396–5398 (1997)

    Article  CAS  Google Scholar 

  99. Burnett, P.J., Rickerby, D.S.: The scratch adhesion test: an elastic-plastic indentation analysis. Thin Solid Films 157, 233–254 (1988)

    Article  CAS  Google Scholar 

  100. Sekler, J., Steinmann, P.A., Hintermann, H.E.: The scratch test: different critical load determination techniques. Surf. Coat Technol. 36, 519–529 (1988)

    Article  CAS  Google Scholar 

  101. Staia, M.H., Puchi, E.S., Schmutz, C.J.: Adhesion of CVD tin on 316l surgical stainless steel obtained in a mass transfer regime. J. Electron. Mater. 26, 980–986 (1997)

    Article  CAS  Google Scholar 

  102. Palesch, E., Cech, V.: Characterization of interlayer adhesion on single glass fibers and planar glass using the nanoscratch test technique. Thin Solid Films 636, 353–358 (2017)

    Article  CAS  Google Scholar 

  103. Xu, K., Hu, N., He, J.: Evaluation of the bond strength of hard coatings by the contact fatigue test. J. Adhes. Sci. Technol. 12, 1055–1069 (1998)

    Article  CAS  Google Scholar 

  104. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2004)

    Book  Google Scholar 

  105. Liu, M., Zhu, G., Dong, X., Liao, J., Gao, C.: Effects of sample tilt on vickers indentation hardness. In: Yao, L., Zhong, S., Kukuta, H., Juang, J.G. (eds.) Advanced Mechanical Science and Technology for the Industrial Revolution 40 FZU 2016, pp. 271–283. Springer, New York (2018)

    Google Scholar 

  106. Xu, Z.H., Li, X.: Effect of sample tilt on nanoindentation behaviour of materials. Philos. Mag. 87, 2299–2312 (2007)

    Article  CAS  Google Scholar 

  107. Kashani, M.S., Madhavan, V.: Analysis and correction of the effect of sample tilt on results of nanoindentation. Acta Mater. 59, 883–895 (2011)

    Article  CAS  Google Scholar 

  108. Huang, H., Zhao, H., Shi, C., Zhang, L.: Using residual indent morphology to measure the tilt between the triangular pyramid indenter and the sample surface. Meas. Sci. Technol. 24, 105602–105607 (2013)

    Article  CAS  Google Scholar 

  109. Shi, C., Zhao, H., Huang, H., Xu, L., Ren, L., Bai, M., et al.: Effects of indenter tilt on nanoindentation results of fused silica: an investigation by finite element analysis. Mater. Trans. 54, 958–963 (2013)

    Article  CAS  Google Scholar 

  110. Shi, C., Zhao, H., Huang, H., Wan, S., Ma, Z., Geng, C., et al.: Effects of probe tilt on nanoscratch results: an investigation by finite element analysis. Tribol. Int. 60, 64–69 (2013)

    Article  Google Scholar 

  111. Huang, L.Y., Xu, K.W., Lu, J.: Evaluation of scratch resistance of diamond-like carbon films on Ti alloy substrate by nano-scratch technique. Diam. Relat. Mater. 11, 1505–1510 (2002)

    Article  CAS  Google Scholar 

  112. Charitidis, C., Logothetidis, S., Gioti, M.: A comparative study of the nanoscratching behavior of amorphous carbon films grown under various deposition conditions. Surf. Coat. Technol. 125, 201–206 (2000)

    Article  CAS  Google Scholar 

  113. Zhang, D., Sun, Y., Gao, C., Liu, M.: Measurement of fracture toughness of copper via constant-load microscratch with a spherical indenter. Wear 444–445, 203158 (2020)

    Article  CAS  Google Scholar 

  114. Gao, C., Liu, M.: Effect of sample tilt on measurement of friction coefficient by constant-load scratch testing of copper with a spherical indenter. J. Test. Eval. 48, 20180719 (2020)

    Article  Google Scholar 

  115. Liu, M., Wu, J., Cao, C.: Sliding of a diamond sphere on K9 glass under prograssive load. J. Non-Cryst. Solid 526, 119711 (2019)

    Article  CAS  Google Scholar 

  116. Akono, A.T., Randall, N.X., Ulm, F.J.: Experimental determination of the fracture toughness via microscratch tests: application to polymers, ceramics, and metals. J. Mater. Res. 27, 485–493 (2012)

    Article  CAS  Google Scholar 

  117. Mcadams, S.D., Tsui, T.Y., Oliver, W.C., Pharr, G.M.: Effects of interlayers on the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates. MRS Online Proc. Library Arch. 356, 1 (1994)

    Google Scholar 

  118. Liu, M., Huang, C., Gao, C.: Effect of sample tilt and normal load on micro-scratch test of copper with a spherical indenter. Tribology 41, 27–37 (2021)

    Google Scholar 

  119. Gao, C., Liu, M.: Effects of normal load on the coefficient of friction by microscratch test of copper with a spherical indenter. Tribol. Lett. 67, 1–12 (2019)

    Article  CAS  Google Scholar 

  120. Scharf, T.W., Barnard, J.A.: Nanotribology of ultrathin a:SiC/SiC-N overcoats using a depth sensing nanoindentation multiple sliding technique. Thin Solid Films 308, 340–344 (1997)

    Article  Google Scholar 

  121. Li, K., Yuhong, B., Li, J.: Stick-slip in the scratching of styrene-acrylonitrile copolymer. J. Mater. Res. 11, 1574–1580 (1996)

    Article  CAS  Google Scholar 

  122. Byerlee, J.D.: The mechanics of stick-slip. Tectnonophysics 9, 475–486 (1970)

    Article  Google Scholar 

  123. Zhang, J., Wei, Y., Sun, T., Hartmaier, A., Yan, Y., Li, X.: Twin boundary spacing-dependent friction in nanotwinned copper. Phys. Rev. B 85, 054109 (2012)

    Article  CAS  Google Scholar 

  124. Wo, P.C., Jones, I.P., Ngan, A.H.W.: TEM study of the deformation structures around nano-scratches. Phil. Mag. 88, 1369–1388 (2008)

    Article  CAS  Google Scholar 

  125. Li, K., Shapiro, Y., Li, J.C.M.: Scratch test of soda-lime glass. Acta Mater. 46, 5569–5578 (1998)

    Article  CAS  Google Scholar 

  126. Yamaguchi, T., Sugawara, T., Takahashi, M., Shibata, K., Moriyasu, K., Nishiwaki, T., et al.: Dry sliding friction of ethylene vinyl acetate blocks: effect of the porosity. Tribol. Int. 116, 264–271 (2017)

    Article  CAS  Google Scholar 

  127. Almotasem, A.T., Bergström, J., Gåård, A., Krakhmalev, P., Holleboom, L.J.: Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics. Tribol. Lett. 65, 101 (2017)

    Article  CAS  Google Scholar 

  128. Lafaye, S., Gauthier, C., Schirrer, R.: A surface flow line model of a scratching tip: apparent and true local friction coefficients. Tribol. Int. 38, 113–127 (2005)

    Article  Google Scholar 

  129. Flores, S.E., Pontin, M.G., Zok, F.W.: Scratching of elastic/plastic materials with hard spherical indenters. J. Appl. Mech. 75, 1055–1062 (2008)

    Article  Google Scholar 

  130. Zhao, G., Liu, M., An, Z., Ren, Y., Liaw, P.K., Yang, F.: Electromechanical responses of Cu strips. J. Appl. Phys. 113, 183521 (2013)

    Article  CAS  Google Scholar 

  131. Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon (1950)

  132. Xiao, J.-K., Zhang, L., Zhou, K.-C., Wang, X.-P.: Microscratch behavior of copper–graphite composites. Tribol. Int. 57, 38–45 (2013)

    Article  CAS  Google Scholar 

  133. Carreon, A.H., Funkenbusch, P.D. Material specific nanoscratch ploughing friction coefficient. Tribol. Int. (2018).

  134. Beegan, D., Chowdhury, S., Laugier, M.T.: Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf. Coat. Technol. 201, 5804–5808 (2007)

    Article  CAS  Google Scholar 

  135. Cheng, Y.-T., Cheng, C.-M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91–149 (2004)

    Article  Google Scholar 

  136. Vander, V.G.F., Lucas, G.M.: Micro-indentation Hardness Testing. Butterworths Scientific (1956)

  137. Kese, K.O., Li, Z.C., Bergman, B.: Method to account for true contact area in soda-lime glass during nanoindentation with the Berkovich tip. Mater. Sci. Eng. A 404, 1–8 (2005)

    Article  CAS  Google Scholar 

  138. Kese, K., Li, Z.C.: Semi-ellipse method for accounting for the pile-up contact area during nanoindentation with the Berkovich indenter. Scr. Mater. 55, 699–702 (2006)

    Article  CAS  Google Scholar 

  139. Yan, Y.D., Sun, T., Dong, S.: Study on effects of tip geometry on AFM nanoscratching tests. Wear 262, 477–483 (2007)

    Article  CAS  Google Scholar 

  140. Bucaille, J.L., Felder, E., Hochstetter, G.: Mechanical analysis of the scratch test on elastic and perfectly plastic materials with the three-dimensional finite element modeling. Wear 249, 422–432 (2001)

    Article  CAS  Google Scholar 

  141. Kareer, A., Hou, X.D., Jennett, N.M., Hainsworth, S.V.: The existence of a lateral size effect and the relationship between indentation and scratch hardness in copper. Philos. Mag. 96, 3396–3413 (2016)

    Article  CAS  Google Scholar 

  142. Kareer, A., Hou, X.D., Jennett, N.M., Hainsworth, S.V.: The interaction between Lateral size effect and grain size when scratching polycrystalline copper using a Berkovich indenter. Philos. Mag. 96, 3414–3429 (2016)

    Article  CAS  Google Scholar 

  143. Liu, C., Liu, W., Xing, W.: An improved edge-based level set method combining local regional fitting information for noisy image segmentation. Signal Process. 130, 12–21 (2017)

    Article  Google Scholar 

  144. Wu, Y., Song, Y., Zhou, H.: Edge detection of combustion flame images based on anisotropic mathematical morphology. Yi Qi Yi Biao Xue Bao/Chin. J. Sci. Instrum. 34, 1818–1825 (2013)

    Google Scholar 

  145. Liu, H., Zhao, M., Lu, C., Zhang, J.: Characterization on the yield stress and interfacial coefficient of friction of glasses from scratch tests. Ceram. Int. (2019).

  146. Useinov, A.S., Useinov, S.S.: Scratch hardness evaluation with in-situ pile-up effect estimation. Philos. Mag. 92, 3188–3198 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project is supported by the National Natural Science Foundation of China (Grant No. 51705082), Engineering Research Centre for CAD/CAM of Fujian Provincial Colleges and Universities (Grant No. K201705), Development Center of Scientific and Educational Park of Fuzhou University in the city of Jinjiang (Grant No. 2019-JJFDKY-11), and Fuzhou University Testing Fund of precious apparatus (Grant No. 2020T017).

Funding

National Natural Science Foundation of China (Grant No. 51705082), Engineering Research Centre for CAD/CAM of Fujian Provincial Colleges and Universities (Grant No. K201705), Development Center of Scientific and Educational Park of Fuzhou University in the city of Jinjiang (No. 2019-JJFDKY-11), and Fuzhou University Testing Fund of precious apparatus (Grant No. 2020T017).

Author information

Authors and Affiliations

Authors

Contributions

The sole author M.L. carried out all the work.

Corresponding author

Correspondence to Ming Liu.

Ethics declarations

Conflict of interest

The author declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M. Influence of Sample Tilt and Applied Load on Microscratch Behavior of Copper Under a Spherical Diamond Indenter. Tribol Lett 69, 88 (2021). https://doi.org/10.1007/s11249-021-01466-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01466-2

Keywords

Navigation