Skip to main content
Log in

Rheological and Thermal Investigation of Industrially Processed Glass Fiber Blended with Linear Low-Density Polyethylene for Rotational Molding Process

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Rotational molding is a technique used to process plastic materials that provide the advantage of obtaining a stress-free end product. While linear low-density polyethylene (LLDPE) is largely preferred for this method, LLDPE is mixed with different additives in order to obtain adequate strength for some critical applications. In contemplation to obtain a sound product, proper mixing of base resin and additives while sustaining rotomoldability is desirable. In the present study, processibility analysis of LLDPE/glass fiber is investigated. Researchers are familiar with the use of glass fibers as an additive in such criteria. However, the rotational molding process has yet to be studied using its industrially processed dust. In particular, the residue of industrially obtained glass fiber (GF) as a waste is mixed with LLDPE in the different weight ratio of 10% to 50%, with 5% increase subsequently. Fourier transform infrared spectroscopy is a technique performed to obtain the optimum percentage range where the result infer the dominant peaks of LLDPE and glass fiber assuring the needed blending. Melt flow index test was carried out to assess the rotomoldability of LLDPE/GF fiber in terms of fluidity. Furthermore, the current research examines the effects on the shear modulus and crystallinity of LLDPE/GF blends based on the rheological and DSC analysis, respectively. In conclusion, the experimental results suggest that 20% LLDPE/GF blend is an optimal percentage for the rotational molding process to achieve requisite processibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nugent P J, Crawford R J and Xu L, Adv Polym Technol 11 (1992) 181.

    Article  CAS  Google Scholar 

  2. Ramkumar P L, Kulkarni D M and Chaudhari V V, Int J Mater Prod Technol 58 (2019) 305.

    Article  Google Scholar 

  3. Gupta N, Ramkumar P and Sangani V, Mater Manuf Process 35 (2020) 1539.

    Article  CAS  Google Scholar 

  4. Ramkumar P, Panchal Y, Panchal D and Gupta N, Mater Today Proc 28 (2020) 1450.

    Article  CAS  Google Scholar 

  5. Gupta N, Ramkumar P and Abhishek K, Mater Today Proc 44 (2021) 1770.

    Article  Google Scholar 

  6. Bagherpour E, Pardis N, Reihanian M and Ebrahimi R, Int J Adv Manuf Technol 100 (2019) 1647.

    Article  Google Scholar 

  7. Crawford R J, J Mater Process Technol 56 (1996) 263.

    Article  Google Scholar 

  8. Gupta N, Ramkumar P L, in: 2020, p. 599.

  9. Crawford R J and Throne J L, Rotational Molding Technol, Elsevier (2002), p. 19.

  10. Crawford R J and Throne J L, Rotational Molding Technol, Elsevier (2002), p. 1.

  11. Gupta N and Ramkumar P, Polym Polym Compos (2020) 096739112095324.

  12. Ramkumar P L, Kulkarni D M, Abhijit V V R and Cherukumudi A, Proc. Mater Sci 6 (2014) 361.

    Article  CAS  Google Scholar 

  13. Ramkumar P L, Kulkarni D M and Chaudhari V V, Sadhana 39 (2014) 625.

    Article  CAS  Google Scholar 

  14. Ramkumar P L, Kulkarni D M, Int J Mater Eng Innov 7 (2016) 159.

    Article  Google Scholar 

  15. Ramkumar P L, Waigaonkar S D and Kulkarni D M, Sadhana Acad Proc Eng Sci 41 (2016) 571.

    Google Scholar 

  16. Greco A, Ferrari F and Maffezzoli A, Adv Polym Technol 2019 (2019) 1.

    Article  Google Scholar 

  17. Olinek J, Anand C and Bellehumeur C T, Polym Eng Sci 45 (2005) 62.

    Article  CAS  Google Scholar 

  18. Ramkumar P L, Ramesh A, Alvenkar P P and Patel N, Mater Today Proc 2 (2015) 3212.

    Article  CAS  Google Scholar 

  19. Spence A G and Crawford R J, Polym Eng Sci 36 (1996) 993.

    Article  CAS  Google Scholar 

  20. Dou Y and Rodrigue D, Cell Polym 37 (2018).

  21. Chandran V G and Waigaonkar S D, Int Polym Process 32 (2017) 50.

    Article  CAS  Google Scholar 

  22. Planes E, Duchet J, Maazouz A and Gerard J F, Polym Eng Sci 48 (2008) 723.

    Article  CAS  Google Scholar 

  23. Graziano A, Jaffer S and Sain M, Review on Modification Strategies of Polyethylene/Polypropylene Immiscible Thermoplastic Polymer Blends for Enhancing Their Mechanical Behavior (2019).

  24. Shibata S and Cao Y, I Fukumoto, 24 (2005) 1005.

    CAS  Google Scholar 

  25. Greco A, Maffezzoli A and Romano G, (2014) 128.

  26. Gelfer Y and Winter H H, Macromolecules 32 (1999) 8974.

    Article  CAS  Google Scholar 

  27. Baxter J W and Bumby J R (1995).

  28. Kwack T H, Han C D, J Appl Polym Sci 28 (1983) 3419.

    Article  CAS  Google Scholar 

  29. Jamshidi S and Sundararaj U, 070014 (2018) 1.

  30. Materials C, R O 52 (2016) 421.

  31. Ghijsels A, Ente J J S M and Raadsen J, Int Polym Process 5 (1990) 284.

    Article  CAS  Google Scholar 

  32. Micic P and Bhattacharya S N, Polym Int 49 (2000) 1580.

    Article  CAS  Google Scholar 

  33. Shaker R and Rodrigue D, Appl Sci 9 (2019) 5430.

    Article  CAS  Google Scholar 

  34. Meireles S, Filho G R, De Assunc R M N and Zeni M, (n.d.).

  35. Nugent P, Appl Plast Eng Handb, Elsevier (2011), p. 311.

  36. Jung M R, Horgen F D, Orski S V, Rodriguez V, Beers K L, Balazs G H, Jones T T, Work T M, Brignac K C, Royer S J, Hyrenbach K D, Jensen B A and Lynch J M, Mar Pollut Bull 127 (2018) 704.

    Article  CAS  Google Scholar 

  37. In: Polym Sci Learn Cent, n.d.

  38. Gupta N and Ramkumar P (2021), p. 37.

  39. Ajji A, Sammut P and Huneault M A, J Appl Polym Sci 88 (2003) 3070.

    Article  CAS  Google Scholar 

  40. Saci H, Bouhelal S, Bouzarafa B, López D and Fernández-García M, J Polym Res 23 (2016) 68.

    Article  Google Scholar 

  41. Khanam P N, Al M and Almaadeed A (n.d.) 63.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PL. Ramkumar.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Ramkumar, P. Rheological and Thermal Investigation of Industrially Processed Glass Fiber Blended with Linear Low-Density Polyethylene for Rotational Molding Process. Trans Indian Inst Met 74, 2003–2011 (2021). https://doi.org/10.1007/s12666-021-02315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02315-5

Keywords

Navigation