Skip to main content
Log in

Influence of Treatment Time and Temperature on Surface Property of Active Screen Plasma-Nitrided EN24 Low Alloy Steel

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Active screen plasma nitriding is a newly developed technique utilized to enhance low alloy steel's surface property by placing them inside a steel case and supplying biased voltage to the cage. In this work, low alloy steel EN24 samples are plasma nitrided using active screen at different process parameters to improve its surface properties. The EN24 samples are treated at 500˚C and 550˚C treatment temperature for 2 h, 4 h and 6 h with gas flow ratio of \({H}_{2}/{N}_{2}=4:1\).The active screen plasma-nitrided samples are analyzed with various analytical techniques such as SEM, XRD, EDS, microhardness test, weight loss technique and potentiodynamic polarization test. From the SEM analysis, it is found that the compound layers vary from 12.680 to 22.025 µm. Further, the SEM analysis also reveals the formation of transformed austenite phases with increasing temperature and treatment time. Phase identification is performed on treated samples by XRD, which reveals the formation of \(\varepsilon ({Fe}_{2-3}N)\) and \(\upgamma ({Fe}_{4}N)\) on the surface of the samples. Using the microhardness test, it is found that the hardness value of treated samples has increased by 3.5 times (approx.) from the base material. From the weight loss technique, the minimum weight loss is seen for the treated sample at 500˚C for 6 h. Finally, it is observed from the potentiodynamic polarization test of the sample treated at 550˚C for 6 h has the minimum corrosion rate of 446.20 mm/year × 10−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alves Jr C, Da Silva E.F, Martinelli A.E, Surf Coat Technol 139 (2001) 1. https://doi.org/10.1016/S0257-8972(00)01146-4

    Article  CAS  Google Scholar 

  2. Ahangarani Sh, Mahboubi F, and Sabour AR, Vacuum 80 (2006) 1032. https://doi.org/10.1016/j.vacuum.2006.01.013

    Article  CAS  Google Scholar 

  3. Li CX, Bell T, Dong H, Surf Eng 18 (2002) 174. https://doi.org/10.1179/026708401225005250

    Article  CAS  Google Scholar 

  4. Kumar N, Ganguli B, Roy B, and Deb B, Trans Indian Inst Met (2021). https://doi.org/10.1007/s12666-021-02191-z

    Article  Google Scholar 

  5. Zhao C, Li CX, Dong H, and Bell T. Surf Coat Technol 201 (2006) 2320. https://doi.org/10.1016/j.surfcoat.2006.04.014

    Article  CAS  Google Scholar 

  6. Rao K.R.M, Nouveau C, and Trinadh K, Trans Indian Inst Met 73 (2020)1695. https://doi.org/10.1007/s12666-020-02013-8

    Article  CAS  Google Scholar 

  7. Li CX, Bell T, Wear 256 (2004)1144. https://doi.org/10.1016/j.wear.2003.07.006

    Article  CAS  Google Scholar 

  8. Cleugh D, Surf Eng 18(2) (2002) 133. https://doi.org/10.1179/026708402225002802

    Article  CAS  Google Scholar 

  9. Perumal G, Geetha M, Asokamani R, Alagumurthi N, Trans Indian Inst Met 66 (2013)109. https://doi.org/10.1007/s12666-012-0234-6

    Article  CAS  Google Scholar 

  10. Berg M, Budtz-Jørgensen CV, Reitz H, Schweitz KO, Chevallier J, Kringhøj P, et al. Surf Coat Technol 124 (2000) 25. https://doi.org/10.1016/S0257-8972(99)00472-7

    Article  CAS  Google Scholar 

  11. Borgioli F, Galvanetto E, Fossati A, and Bacci T, Surf Coat Technol 162 (2002) 61. https://doi.org/10.1016/S0257-8972(02)00574-1

    Article  Google Scholar 

  12. C. X. Li, Surf Eng 26(3) (2010) 1. https://doi.org/10.1179/174329409X439032

    Article  CAS  Google Scholar 

  13. De Sousa R.R.M, De Araújo F.O, Gontijo L.C, Da Costa J.A.P, and Jr Alves C, Vacuum 86 (2012) 2048. https://doi.org/10.1016/j.vacuum.2012.05.008

    Article  CAS  Google Scholar 

  14. Wang L, Li Y, and Wu X, Appl. Surf Sci 254 (2008) 6595. https://doi.org/10.1016/j.apsusc.2008.04.027

    Article  CAS  Google Scholar 

  15. Figueroa U, Oseguera J, Schabes-Retchkinam P.S, Surf Coat Technol 728 (1996) 86. https://doi.org/10.1016/S0257-8972(96)03058-7

    Article  Google Scholar 

  16. Metin E, O.T. Inal J Mater Sci 22 (1987) 2783. https://doi.org/10.1007/BF01086471

    Article  CAS  Google Scholar 

  17. Corengia P, Ybarra G, Moina C, Cabo A, and Broitman E, Surf Coat Technol 200 (2005) 2391. https://doi.org/10.1016/j.surfcoat.2005.01.060

    Article  CAS  Google Scholar 

  18. Saeed A, Khan A W, Jan F, Abrar M, Khalid M, Zakaullah M, Appl Surf Sci 273 (2013) 173. https://doi.org/10.1016/j.apsusc.2013.02.008

    Article  CAS  Google Scholar 

  19. Gautam D, Ganguli B, and Sharma S, Mater Perform Characterization 6 (2017) 581. https://doi.org/10.1520/MPC20160084

    Article  CAS  Google Scholar 

  20. Bell T, Sun Y, and Suhadi A, Vacuum 59 (2000) 14. https://doi.org/10.1016/S0042-207X(00)00250-5

    Article  CAS  Google Scholar 

  21. Wöhrle T, Thermodynamics and Kinetics of Phase Transformations in the Fe-N-C System, Dissertation. Stuttgart: Fakultät Chemie der Universität Stuttgart, 2012 (142 pp.), (2012).

  22. Lei M.K, Zhang Z.L, Surf Coat Technol 91 (1997) 25. https://doi.org/10.1016/S0257-8972(96)03155-6

    Article  CAS  Google Scholar 

  23. Liapina T, Leineweber E.J, and Mittemeijer A, Metall Mater Trans A 37 (2006) 319. https://doi.org/10.1007/s11661-006-0003-4

    Article  Google Scholar 

  24. Nikolussi M, Leineweber A, Bischoff E, Mittemeijer E.J, Int J Mat Red 98 (2007) 1086. https://doi.org/10.3139/146.101576

    Article  CAS  Google Scholar 

  25. Lampe T, S Eisenberg, and Laudien G, Surf Eng 9 (1993) 69. https://doi.org/10.1179/sur.1993.9.1.69

    Article  CAS  Google Scholar 

  26. Jacobs H, Rechenbach D, and Zachwieja U, J Alloys Comp 227 (1995) 10. https://doi.org/10.1016/0925-8388(95)01610-4

    Article  CAS  Google Scholar 

  27. Ahangarani Sh, Sabour A.R, Mahboubi F, and Shahrabi T, J Alloys Comp 484 (2009) 222. https://doi.org/10.1016/j.jallcom.2009.03.161

    Article  CAS  Google Scholar 

  28. C.X. Li, T. Bell, Corrosion Science 46 (6) (2004) 1527. https://doi.org/10.1016/j.corsci.2003.09.015

    Article  CAS  Google Scholar 

  29. Nakata K, Yamauchi W, Akamatsu K, Ushio M, Surf Coat Technol 174 (2003) 1206. https://doi.org/10.1016/S0257-8972(03)00459-6

    Article  CAS  Google Scholar 

  30. Asadi Z.S, Mahboubi F, Mater & Des. 34 (2012) 516. https://doi.org/10.1016/j.matdes.2011.04.066

    Article  CAS  Google Scholar 

  31. Kniess C T, Lima J C D and Prates P B, in Sintering – Methods and Products, (ed) Shatokha V, London (2012) p 294.

  32. Ramboa K D M, Ferreira M C M, J Braz Chem Soc 26 (2015) 1491. http://dx.doi.org/https://doi.org/10.5935/0103-5053.201

    Article  Google Scholar 

  33. Shen H, Wang L, Surf Coat Technol 378 (2019)124953. https://doi.org/10.1016/j.surfcoat.2019.124953

    Article  CAS  Google Scholar 

  34. Liang W, Bin X, Zhiwei Y, & Yaqin S, Surf Coat Technol 130 (2000) 304. https://doi.org/10.1016/S0257-8972(00)00713-1

    Article  CAS  Google Scholar 

  35. Naeem M, Shafiq M, Zaka-ul-Islam M, Ashiq A, Díaz-Guillén J C, Shahzad M, Zakaullah M, Mater & Des 108 (2016) 745. https://doi.org/10.1016/j.matdes.2016.07.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of Mr. Hardik Patel, Scientific Assistant-C, Institute for Plasma Research Gandhinagar, India, Mr. Subrat Kumar Das, Scientific Assistant-C (for SEM) and Mr. Vyom Desai, PhD scholar (for XRD analysis) from Facilitation Centre for Industrial Plasma Technologies Gandhinagar, India, in this study.

Funding

This study does not contain any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nand Kumar.

Ethics declarations

Conflict of interest

All the authors declare no conflict of interest involved in the present study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Roy, B., Ganguli, B. et al. Influence of Treatment Time and Temperature on Surface Property of Active Screen Plasma-Nitrided EN24 Low Alloy Steel. Trans Indian Inst Met 74, 2027–2041 (2021). https://doi.org/10.1007/s12666-021-02299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02299-2

Keywords

Navigation