Skip to main content
Log in

Study on Liquid Sloshing in an Annular Rigid Circular Cylindrical Tank with Damping Device Placed in Liquid Domain

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

Sloshing is undesirable phenomenon and may invite instability in any type of tank partially filled with liquid. For a specially designed circular cylindrical container filled with an inviscid, incompressible, and homogenous liquid, if an annular baffle is attached to the outer cylinder wall in the annular region of the cylinder at some depth, the natural frequencies and the response of the liquid in the container undergo a drastic change. The purpose of this study is to report the sloshing modes and sloshing frequencies in the annular region of two coaxial vertical circular cylinders.

Methods

An introduction of a baffle divides the liquid region into four. Boundary value problems are set up for the potential in each of these regions, and with the help of the matching conditions across the virtual interfaces, we set up a system of linear equations by solving which we determine the natural frequencies.

Results and conclusions

The fundamental natural frequency of the liquid is determined for different width and positions of the baffle in addition to different configurations. It is observed that effect of baffle position on frequency is non-monotonic. It is also observed that when a baffle is placed nearer to the free surface, it has a greater significance on frequency. It is observed that frequency decreases with increasing baffle depth. The effect of the inner radius of the baffle on frequency is almost monotonic while with increasing inner radius of container, frequency increases monotonically. ANSYS is used to report the first modes of the sloshing. All our observations are supported by relevant graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bauer HF, Eidel W (1999) Frictionless liquid sloshing in circular cylindrical container configurations. Aerosp Sci Technol 5:301–311

    Article  Google Scholar 

  2. Choudhary N, Bora SN (2016) Liquid sloshing in a circular cylindrical container containing a two-layer fluid, Int. J. Adv Eng Sci Appl Math 8(4):240–248

    MathSciNet  MATH  Google Scholar 

  3. Choudhary N, Bora SN (2017) Linear sloshing frequencies in the annular region of a circular cylindrical container in presence of a rigid baffle. Sadhana Acad Proc Eng Sci 42(5):805–815

    MathSciNet  MATH  Google Scholar 

  4. Evans DV (1990) The wide-spacing approximation applied to multiple scattering and sloshing problems. J Fluid Mech 210:647–658

    Article  MathSciNet  Google Scholar 

  5. Faltinsen OM, Rognebakke OF, Lukovsky IA, Timokha AN (2000) Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J Fluid Mech 407:201–234

    Article  MathSciNet  Google Scholar 

  6. Faltinsen OM, Timokha AN (2001) An adaptive multimodal approach to nonlinear sloshing in a rectangular tank. J Fluid Mech 432:167–200

    Article  Google Scholar 

  7. Faltinsen OM, Timokha AN (2002) Asymptotic modal approximation of nonlinear resonant sloshing in a rectangular tank with small fluid depth. J Fluid Mech 470:319–357

    Article  MathSciNet  Google Scholar 

  8. Faltinsen OM, Rognebakke OF, Timokha AN (2003) Resonant three-dimensional nonlinear sloshing in a square-base basin. J Fluid Mech 487:1–42

    Article  MathSciNet  Google Scholar 

  9. Faltinsen OM, Rognebakke OF, Timokha AN (2005) Resonant three-dimensional nonlinear sloshing in a square-base basin. Part 2. Effect of higher modes. J Fluid Mech 523:199–218

    Article  MathSciNet  Google Scholar 

  10. Gavrilyuk I, Lukovsky I, Trotsenko Y, Timokha A (2007) Sloshing in a vertical circular cylindrical tank with an annular baffle. Part 2. Nonlinear resonant waves. J Eng Math 57:57–78

    Article  Google Scholar 

  11. Ibrahim RA (2005) Liquid sloshing dynamics: theory and applications. Cambrige University Press, Cambridge

    Book  Google Scholar 

  12. McIver P, McIver M (1993) Sloshing frequencies of longitudinal modes for a liquid contained in a trough. J Fluid Mech 252:525–541

    Article  MathSciNet  Google Scholar 

  13. Ockendon H, Ockendon JR, Johnson AD (1986) Resonant sloshing in shallow water. J Fluid Mech 167:465–479

    Article  MathSciNet  Google Scholar 

  14. Papaspyrou S, Karamanos SA, Valougeorgis D (2004) Response of half full horizontal cylinders under transverse excitations. J Fluid Struct 19:985–1003

    Article  Google Scholar 

  15. La Rocca M, Sciortino G, Boniforti MA (2000) A fully nonlinear model for sloshing in a rotating container. Fluid Dyn Res 27:23

    Article  MathSciNet  Google Scholar 

  16. Strelnikova EA, Choudhary N, Krivtchenko DV, Gnitko IV, Anatoly MT (2020) Liquid vibrations in circular cylindrical tanks with and without baffles under horizontal and vertical excitations. Eng Anal Bound Elem 120:13–27

    Article  MathSciNet  Google Scholar 

  17. Thiagarajan KP, Rakshit D, Repalle N (2011) The air water sloshing problem: fundamental analysis and parametric studies on excitation and fill levels. Ocean Eng 38:498–508

    Article  Google Scholar 

  18. Wang JD, Zhou D, Liu WQ (2012) Sloshing of liquid in rigid cylindrical container with a rigid annular baffle. Part I: free vibration. Shock Vib 19:1185–1203

    Article  Google Scholar 

  19. Wang JD, Lo SH, Zhou D (2012) Liquid sloshing in rigid cylindrical container with multiple rigid annular baffles: free vibration. J Fluid Struct 34:138–156

    Article  Google Scholar 

  20. Yuanjun H, Xingrui M, Pingping W, Benli W (2007) Low-gravity liquid nonlinear sloshing analysis in a tank under pitching excitation. J Sound Vib 299:164–177

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Indian Institute of Technology Guwahati, India for providing the necessary help to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Choudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

$$\begin{aligned} a^{11}_{mn{\bar{n}}}= & {} -\delta _{n{\bar{n}}}\times \frac{\left[ I_{m}'\left( \frac{n\pi }{\beta _{1}}\gamma \right) K_{m}'\left( \frac{n\pi }{\beta _{1}}\right) -I_{m}'\left( \frac{n\pi }{\beta _{1}}\right) K_{m}'\left( \frac{n\pi }{\beta _{1}}\gamma \right) \right] }{K_{m}'\left( \frac{n\pi }{\beta _{1}}\right) } \times \int ^{\beta _{1}}_{0}\cos ^{2}\left( \frac{n\pi }{\beta _{1}}\eta \right) d\eta \end{aligned}$$
(A.1)
$$\begin{aligned} a^{12}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}\times \frac{\left[ I_{m}'\left( \frac{n\pi }{\beta _{1}}\gamma \right) K_{m}'\left( \frac{n\pi }{\beta _{1}}\alpha \right) -I_{m}'\left( \frac{n\pi }{\beta _{1}}\alpha \right) K_{m}'\left( \frac{n\pi }{\beta _{1}}\gamma \right) \right] }{K_{m}'\left( \frac{n\pi }{\beta _{1}}\alpha \right) } \times \int ^{\beta _{1}}_{0}\cos ^{2}\left( \frac{n\pi }{\beta _{1}}\eta \right) d\eta \end{aligned}$$
(A.2)
$$\begin{aligned} a^{21}_{mn{\bar{n}}}= & {} -\delta _{n{\bar{n}}}\times \frac{\left[ I_{m}\left( \frac{n\pi }{\beta _{1}}\gamma \right) K_{m}'\left( \frac{n\pi }{\beta _{1}}\right) -I_{m}'\left( \frac{n\pi }{\beta _{1}}\right) K_{m}\left( \frac{n\pi }{\beta _{1}}\gamma \right) \right] }{K_{m}'\left( \frac{n\pi }{\beta _{1}}\right) } \times \int ^{\beta _{1}}_{0}\cos ^{2}\left( \frac{n\pi }{\beta _{1}}\eta \right) d\eta \end{aligned}$$
(A.3)
$$\begin{aligned} a^{22}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}\times \frac{\left[ I_{m}\left( \frac{n\pi }{\beta _{1}}\gamma \right) K_{m}'\left( \frac{n\pi }{\beta _{1}}\alpha \right) -I_{m}'\left( \frac{n\pi }{\beta _{1}}\alpha \right) K_{m}\left( \frac{n\pi }{\beta _{1}}\gamma \right) \right] }{K_{m}'\left( \frac{n\pi }{\beta _{1}}\alpha \right) } \times \int ^{\beta _{1}}_{0}\cos ^{2}\left( \frac{n\pi }{\beta _{1}}\eta \right) d\eta \end{aligned}$$
(A.4)
$$\begin{aligned} a^{23}_{mn{\bar{n}}}= & {} \left[ J_{m}\left( k_{m{\bar{n}}}\gamma \right) Y'_{m}\left( k_{m{\bar{n}}}\alpha \right) -J_{m}\left( k_{m{\bar{n}}}\alpha \right) Y'_{m}\left( k_{m{\bar{n}}}\gamma \right) \right] \nonumber \\&\times \int ^{\beta _{1}}_{0}\left( e^{k_{m{\bar{n}}}\eta }+e^{-k_{m{\bar{n}}}\eta }\right) \cos \left( \frac{n\pi }{\beta _{1}}\eta \right) d\eta \end{aligned}$$
(A.5)
$$\begin{aligned} a^{33}_{mn{\bar{n}}}= & {} -\delta _{n{\bar{n}}}\times \left( e^{k_{mn}\beta _{1}}-e^{-k_{mn}\beta _{1}}\right) \times \nonumber \\&\int ^{\gamma }_{\alpha } \xi {\left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] }^{2} d\xi \end{aligned}$$
(A.6)
$$\begin{aligned} a^{38}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}\times \left( e^{k_{mn}\beta _{1}}+e^{k_{mn}(2\beta _{2}-\beta _{1})}\right) \times \nonumber \\&\int ^{\gamma }_{\alpha }\xi {\left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] }^{2} d\xi \end{aligned}$$
(A.7)
$$\begin{aligned} a^{42}_{mn{\bar{n}}}= & {} (-1)^{{\bar{n}}+1}\int ^{\gamma }_{\alpha }\xi \left[ \frac{\left[ I_{m}\left( \frac{{\bar{n}}\pi }{\beta _{1}}\xi \right) K_{m}'\left( \frac{{\bar{n}}\pi }{\beta _{1}}\alpha \right) -I_{m}'\left( \frac{{\bar{n}}\pi }{\beta _{1}}\alpha \right) K_{m}\left( \frac{{\bar{n}}\pi }{\beta _{1}}\xi \right) \right] }{K_{m}'\left( \frac{{\bar{n}}\pi }{\beta _{1}}\alpha \right) }\right] \nonumber \\&\times \left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] d\xi \end{aligned}$$
(A.8)
$$\begin{aligned} a^{43}_{mn{\bar{n}}}= & {} -\delta _{n{\bar{n}}}\times \left( e^{k_{mn}\beta _{1}}+e^{-k_{mn}\beta _{1}}\right) \times \nonumber \\&\int ^{\gamma }_{\alpha }\xi {\left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] }^{2} d\xi \nonumber \\&-\delta ^{2}_{m}\frac{\gamma ^{m}-\gamma ^{-m}}{2\beta _{1}(1-\alpha ^{2m})} \left[ J_{m}\left( k_{m{\bar{n}}}\gamma \right) Y'_{m}\left( k_{m{\bar{n}}}\alpha \right) -J_{m}\left( k_{m{\bar{n}}}\alpha \right) Y'_{m}\left( k_{m{\bar{n}}}\gamma \right) \right] \times \nonumber \\&\int ^{\beta _{1}}_{0}\left( e^{k_{m{\bar{n}}}\eta }+e^{-k_{m{\bar{n}}}\eta }\right) d\eta \times \int ^{\gamma }_{\alpha }(\xi ^{m+1}+\alpha ^{2m}\xi ^{-m+1})\times \nonumber \\&\left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] d\xi \end{aligned}$$
(A.9)
$$\begin{aligned} a^{46}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}\times 2e^{k_{mn}\beta _{1}} \int ^{\gamma }_{\alpha } \xi {\left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] }^{2} d\xi \end{aligned}$$
(A.10)
$$\begin{aligned} a^{47}_{mn{\bar{n}}}= & {} \int ^{\gamma }_{\alpha } \xi \left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] \times \nonumber \\&\frac{\left[ I_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) -I_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) K_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) \right] }{K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) } d\xi \end{aligned}$$
(A.11)
$$\begin{aligned} a^{48}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}\times \left( e^{k_{mn}\beta _{1}}-e^{-k_{mn}(2\beta _{2}-\beta _{1})}\right) \times \nonumber \\&\int ^{\gamma }_{\alpha } \xi {\left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] }^{2} d\xi \end{aligned}$$
(A.12)
$$\begin{aligned} a^{55}_{mn{\bar{n}}}= & {} -\delta _{n{\bar{n}}}\times \frac{\left[ I'_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) K_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\right) -I_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\right) K'_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) \right] }{K_{m}' \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})} \right) } \nonumber \\&\times \int ^{\beta _{2}}_{\beta _{1}}\cos ^{2}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})\pi }(\eta -\beta _{1})\right) d\eta \end{aligned}$$
(A.13)
$$\begin{aligned} a^{57}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}} \frac{\left[ I'_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) K_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) -I_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) K'_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) \right] }{K_{m}' \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) } \nonumber \\&\times \int ^{\beta _{2}}_{\beta _{1}}\cos ^{2}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \end{aligned}$$
(A.14)
$$\begin{aligned} a^{64}_{mn{\bar{n}}}= & {} -\left[ J_{m}\left( \lambda _{m{\bar{n}}}\gamma \right) Y'_{m}\left( \lambda _{m{\bar{n}}}\right) -J_{m}\left( \lambda _{m{\bar{n}}}\right) Y'_{m}\left( \lambda _{m{\bar{n}}}\gamma \right) \right] \nonumber \\&\times \int ^{\beta _{2}}_{\beta _{1}}\left( e^{\lambda _{m{\bar{n}}}\eta }+e^{\lambda _{m{\bar{n}}}(2\beta _{1}-\eta )}\right) \cos \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \end{aligned}$$
(A.15)
$$\begin{aligned} a^{65}_{mn{\bar{n}}}= & {} -\delta _{n{\bar{n}}}\times \int ^{\beta _{2}}_{\beta _{1}}\cos ^{2}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \nonumber \\&\frac{\left[ I_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) K_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\right) -I_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\right) K_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) \right] }{K_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\right) } \nonumber \\&+\delta ^{1}_{m}\frac{(2{\bar{n}}-1)(-1)^{{\bar{n}}+1}\pi }{\omega ^{*2}(\beta _{2}-\beta _{1})(1-\gamma ^{2})}\times \int ^{\beta _{2}}_{\beta _{1}}\cos \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \times \nonumber \\&\int ^{1}_{\gamma } \xi \frac{\left[ I_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\right) -I_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\right) K_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) \right] }{K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\right) }d\xi \end{aligned}$$
(A.16)
$$\begin{aligned} a^{66}_{mn{\bar{n}}}= & {} \left[ J_{m}\left( k_{m{\bar{n}}}\gamma \right) Y'_{m}\left( k_{m{\bar{n}}}\alpha \right) -J_{m}\left( k_{m{\bar{n}}}\alpha \right) Y'_{m}\left( k_{m{\bar{n}}}\gamma \right) \right] \nonumber \\&\times \int ^{\beta _{2}}_{\beta _{1}}\left( e^{k_{m{\bar{n}}}\eta }+e^{k_{m{\bar{n}}}(2\beta _{1}-\eta )}\right) \cos \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \end{aligned}$$
(A.17)
$$\begin{aligned} a^{67}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}} \times \int ^{\beta _{2}}_{\beta _{1}}\cos ^{2}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \times \nonumber \\&\frac{\left[ I_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) K_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) -I_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) K_{m}\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\gamma \right) \right] }{K_{m}'\left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) }\nonumber \\&+\delta ^{1}_{m}\frac{(2{\bar{n}}-1)(-1)^{{\bar{n}}+1}\pi }{\omega ^{*2}(\beta _{2}-\beta _{1})(\gamma ^{2}-\alpha ^{2})}\times \int ^{\beta _{2}}_{\beta _{1}}\cos \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \times \nonumber \\&\int ^{\gamma }_{\alpha } \xi \frac{\left[ I_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) -I_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) K_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) \right] }{K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) }d\xi \end{aligned}$$
(A.18)
$$\begin{aligned} a^{68}_{mn{\bar{n}}}= & {} \left[ J_{m}\left( k_{m{\bar{n}}}\gamma \right) Y'_{m}\left( k_{m{\bar{n}}}\alpha \right) -J_{m}\left( k_{m{\bar{n}}}\alpha \right) Y'_{m}\left( k_{m{\bar{n}}}\gamma \right) \right] \nonumber \\&\times \int ^{\beta _{2}}_{\beta _{1}}\left( e^{k_{m{\bar{n}}}\eta }-e^{k_{m{\bar{n}}}(2\beta _{2}-\eta )}\right) \cos \left( \frac{(2n-1)\pi }{2(\beta _{2}-\beta _{1})}(\eta -\beta _{1})\right) d\eta \end{aligned}$$
(A.19)
$$\begin{aligned} a^{76}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}k_{mn}\left( e^{k_{mn}\beta _{2}}-e^{k_{mn}(2\beta _{1}-\beta _{2})}\right) \times \nonumber \\&\int ^{\gamma }_{\alpha }\xi \left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] ^{2} d\xi \nonumber \\&-\omega ^{*2}\delta _{n{\bar{n}}}\left( e^{k_{mn}\beta _{2}}+e^{k_{mn}(2\beta _{1}-\beta _{2})}\right) \times \nonumber \\&\int ^{\gamma }_{\alpha }\xi \left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] ^{2} d\xi \end{aligned}$$
(A.20)
$$\begin{aligned} a^{77}_{mn{\bar{n}}}= & {} \frac{(2{\bar{n}}-1)(-1)^{{\bar{n}}}\pi }{2(\beta _{2}-\beta _{1})}\int ^{\gamma }_{\alpha } \xi \times \left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] \nonumber \\&\frac{\left[ I_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) -I_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) K_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) \right] }{K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\alpha \right) }d\xi \end{aligned}$$
(A.21)
$$\begin{aligned} a^{78}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}2k_{mn}e^{k_{mn}\beta _{2}}\int ^{\gamma }_{\alpha }\xi \left[ J_{m}\left( k_{mn}\xi \right) Y'_{m}\left( k_{mn}\alpha \right) -J_{m}\left( k_{mn}\alpha \right) Y'_{m}\left( k_{mn}\xi \right) \right] ^{2} d\xi \end{aligned}$$
(A.22)
$$\begin{aligned} a^{84}_{mn{\bar{n}}}= & {} \delta _{n{\bar{n}}}\lambda _{mn}\left( e^{\lambda _{mn}\beta _{2}}-e^{\lambda _{mn}(2\beta _{1}-\beta _{2})}\right) \times \nonumber \\&\int ^{1}_{\gamma }\xi \left[ J_{m}\left( \lambda _{mn}\xi \right) Y'_{m}\left( \lambda _{mn}\right) -J_{m}\left( \lambda _{mn}\right) Y'_{m}\left( \lambda _{mn}\xi \right) \right] ^{2} d\xi \nonumber \\&-\omega ^{*2}\delta _{n{\bar{n}}}\left( e^{\lambda _{mn}\beta _{2}}+e^{\lambda _{mn}(2\beta _{1}-\beta _{2})}\right) \times \nonumber \\&\int ^{1}_{\gamma }\xi \left[ J_{m}\left( \lambda _{mn}\xi \right) Y'_{m}\left( \lambda _{mn}\right) -J_{m}\left( \lambda _{mn}\right) Y'_{m}\left( \lambda _{mn}\xi \right) \right] ^{2} d\xi \end{aligned}$$
(A.23)
$$\begin{aligned} a^{85}_{mn{\bar{n}}}= & {} \frac{(2{\bar{n}}-1)(-1)^{{\bar{n}}}\pi }{2(\beta _{2}-\beta _{1})}\int ^{1}_{\gamma } \xi \times \left[ J_{m}\left( \lambda _{mn}\xi \right) Y'_{m}\left( \lambda _{mn}\right) \nonumber \right. \\&\left. -J_{m}\left( \lambda _{mn}\right) Y'_{m}\left( \lambda _{mn}\xi \right) \right] \nonumber \\&\frac{\left[ I_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\right) -I_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\right) K_{m}\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\xi \right) \right] }{K_{m}'\left( \frac{(2{\bar{n}}-1)\pi }{2(\beta _{2}-\beta _{1})}\right) } d\xi \end{aligned}$$
(A.24)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, N., Bora, S.N. & Strelnikova, E. Study on Liquid Sloshing in an Annular Rigid Circular Cylindrical Tank with Damping Device Placed in Liquid Domain. J. Vib. Eng. Technol. 9, 1577–1589 (2021). https://doi.org/10.1007/s42417-021-00314-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-021-00314-w

Keywords

Navigation