Skip to main content
Log in

The effect of a parabolic potential on the properties of a strongly coupled polaron in an asymmetric Gaussian quantum well

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this work, the effect of parabolic potential on the properties of strongly coupled polaron in an asymmetric Gaussian quantum well (QW) has been studied. Relations of the frequency vibration and the strongly coupled polaron’s ground-state energy in an asymmetric Gaussian QW for RbCl crystals at different confinement strengths along the x and the y directions, the asymmetric Gaussian QW barrier heights, and the Gaussian confinement potential widths and temperatures have been studied using the Lee–Low–Pines unitary transformation and the linear combination operator methods. Calculations show that the absolute value of ground-state energy increased with increasing confinement strengths along the x and the y directions and asymmetric Gaussian QW barrier height, and derease with increeasing Gaussian confinement potential width, and temperature. In addition, vibrational frequency was found to decrease with increasing Gaussian confinement potential width and to increase with increasing confinement strengths along the x and the y directions, asymmetric Gaussian QW barrier height, and temperature. The five parameters involved in this paper are important physical quantities for studying the properties of Gaussian QWs, and have important physical significance for the study of nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.D. Zhu, S.W. Gu, Phys. Rev. B 47, 12941 (1993)

    Article  ADS  Google Scholar 

  2. K.D. Zhu, S.W. Gu, Commun. Theor. Phys. 19, 27 (1992)

    Article  ADS  Google Scholar 

  3. L. Dinh, H.V. Phuc, Superlatt. Microstruct. 86, 111 (2015)

    Article  ADS  Google Scholar 

  4. X.J. Miao, Y. Sun, J.L. Xiao, Int. J. Mod. Phys. B 34, 12 (2020)

    Article  Google Scholar 

  5. R. Khordad, S. Goudarzi, Indian J. Phys. 90, 659 (2016)

    Article  ADS  Google Scholar 

  6. Y. Sun, X.J. Miao, Z.H. Ding, J.L. Xiao, J. Semicond. 4, 10 (2017)

    Google Scholar 

  7. H. Hasegawa, A. Physica 392, 24 (2013)

    Google Scholar 

  8. W. Qiu, J.L. Xiao, C.Y. Cai, J. Low. Temp. Phys. 198, 233 (2020)

    Article  ADS  Google Scholar 

  9. G.Q. Hai, F.M. Peeters, Phys. Rev. B 60, 8984 (1999)

    Article  ADS  Google Scholar 

  10. Y.H. Ren, Q.H. Chen, J. Song, Y.B. Yu, Z.K. Jiao, Phys. Stat. Sol. B 214, 327 (1999)

    Article  ADS  Google Scholar 

  11. A.H. Proppe, B.R. Quinter, H. Tan, O. Voznyy, S.O. Kelley, E.H. Sargent, J. Am chem. Soc. 140, 8 (2018)

    Article  Google Scholar 

  12. W.J. Huybrechts, J. Phys. C 10, 19 (1977)

    Article  Google Scholar 

  13. W. Xiao, J.L. Xiao, J. Semicond. 40, 042901 (2019)

    Article  ADS  Google Scholar 

  14. X.J. Miao, Y. Sun, J.L. Xiao, J. Korean Phys. Soc. 67, 7 (2015)

    Article  Google Scholar 

  15. X.Q. Wang, J.L. Xiao, Int. J. Theor. Phys. 57, 11 (2018)

    Google Scholar 

  16. W. Xiao, Y.J. Chen, J.L. Xiao, Chinese. J. Phys 61, 190 (2019)

    Google Scholar 

  17. J.L. Xiao, Superlatt. Microstruct 120, 459 (2018)

    Article  ADS  Google Scholar 

  18. S.P. Shan, S.H. Chen, Pramana. J. Phys. 94, 1 (2020)

    Google Scholar 

  19. Y. Sun, J.L. Xiao, Superlatt. Microstruct. 145, 106617 (2020)

    Article  Google Scholar 

  20. L.V. Asryan, F.I. Zubov, Y.S. Balezinapolubavkina et al., Semiconductors 52, 12 (2018)

    Article  Google Scholar 

  21. K. Fellaoui, A. Oueriagli, D. Abouelaoualim, Indian J. Phys. 93, 1353 (2019)

    Article  ADS  Google Scholar 

  22. T.V. Tuan, N.Q. Khanh, V.V. Tai, Commun. Phys. 30, 2 (2020)

    Article  Google Scholar 

  23. A.S. Yaroshevich, Z.D. Kvon, G.M. Gusev, N.N. Mikhailov, Microwave. JETP Lett. 111, 2 (2020)

    Article  Google Scholar 

  24. J. Yan, M.M. Wei, Y.X. Xing, Acta Physica Sinica 68, 22 (2019)

    Google Scholar 

  25. I. Yang, Z. Li, J. Wong-Leung, Y. Zhu, Nano Lett. 19, 6 (2019)

    Google Scholar 

  26. Y. Sun, J.L. Xiao, Phys. E. 121, 114122 (2020)

    Article  Google Scholar 

  27. J.L. Xiao, Superlatt. Microstruct. 125, 233 (2019)

    Article  ADS  Google Scholar 

  28. K.A. Hasanov, J.I. Huseynov, Semiconductors 50, 3 (2016)

    Article  Google Scholar 

  29. A.E. Kadadra, K. Fellaoui, D. Abouelaoualim, A. Oueriagli, Mod. Phy. Lett. B 30, 25 (2016)

    Article  Google Scholar 

  30. Y. Sun, J.L. Xiao, European Phys. J. Plus 135, 7 (2020)

    Article  Google Scholar 

  31. J.T. Devreese, North Holland Publishing Company Amsterdam (1972)

  32. Sarengaowa, J.L. Xiao, C.L. Zhao, Chinese J Phys. 55, 1883 (2017)

Download references

Acknowledgement

The subject is supported by Natural Science Foundation of China (No.11464033) and Natural Science Foundation of Inner Mongolia Autonomous Region of China under Grant No. 2019MS01008 and No. 2018LH01003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao-Hua Ding or Jing-Lin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, YB., Ding, ZH. & Xiao, JL. The effect of a parabolic potential on the properties of a strongly coupled polaron in an asymmetric Gaussian quantum well. J. Korean Phys. Soc. 79, 30–37 (2021). https://doi.org/10.1007/s40042-021-00184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-021-00184-1

Keywords

Navigation