Skip to main content
Log in

PBAT-based Microfiltration Membranes Using Porogen Saturated Solutions: Architecture, Morphology, and Environmental Profile

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

There is a scientific consensus that the use of membranes for water filtration presents itself as a promising research area for removing a wide range of sedimentary and biological origin pollutants. In this context, non-biodegradable membranes have been widely used; however, they can potentially cause severe environmental problems during their life cycle, after use, at the disposal phase. Thus, biodegradable materials have arisen as new materials for membrane production. This work aimed to develop biodegradable poly(butylene adipate-co-terephthalate) (PBAT) based membranes and evaluate the effect of different porogens (polysorbate 80, glucose, sodium chloride, and sodium acetate) on the pore size formation and distribution. The combination evaporation-induced phase separation/non-solvent phase separation (EIPS/NIPS) processes were used to obtain the membranes with porous network structure. Membranes were evaluated by visual aspect, Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and mechanical essays. The porogen selection also relied on a Life Cycle Assessment (LCA) within a "cradle-to-gate" approach and their contributions to the global PBAT-based membranes’ environmental impact. Statistical analyses were conducted to evaluate the effects of concentration and type of porogen agent employed, indicating the membrane’s potential to retain Escherichia coli (E. coli), chosen as the model microorganism. Sodium chloride and sodium acetate proved to be the most suitable porogens for the intended application, with sodium chloride presenting the best environmental performance. We highlight the potential to extend these PBAT-based membranes to other bacteria, some protozoa, virus species, and suspended particles’ retention.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Adapted from Purkait et al. [20]

Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Jacobi PR, Grandisoli E (2017) In book Água e sustentabilidade: desafios, perspectivas e Soluções; São Paulo—IEE-USP e Reconectta, 1a Edição, p. 110. Accessed 10 July 2020

  2. Orlowsky B, Hoekstra AY, Gudmundsson L, Seneviratne SI (2014) Environ Res Lett 9(7):074007

    Google Scholar 

  3. Souza MM, Gastaldini MCC (2014) Eng Sanit e Ambient 19(3):263–274

    Google Scholar 

  4. Ullah AK, Jiang J, Wang P (2018) Glob J Environ Sci Manag 4:231–250

    Google Scholar 

  5. Cantelle TD, De Castro Lima E, Borges LAC (2018) Rev em Agronegocio e Meio Ambient 11(4):1259–1282

    Google Scholar 

  6. Mekonnen MM, Hoekstra AY (2016) Sci Adv 2(2):e1500323

    PubMed  PubMed Central  Google Scholar 

  7. Dongre RS, Sadasivuni KK, Deshmukh K, Mehta A, Basu S, Meshram JS, Al-Maadeed MAA, Karim A (2019) Polym Technol Mater 58:1295–1310

    CAS  Google Scholar 

  8. Gunda NSK, Naicker S, Shinde S, Kimbahune S, Shrivastava S, Mitra SK (2014) Anal Methods 6:6236–6246

    Google Scholar 

  9. Gunda NSK, Chavali R, Mitra SK (2016) Analyst 141:2920–2929

    CAS  PubMed  Google Scholar 

  10. Ellis H, Schoenberger E (2017) PLoS ONE 12:1–19

    Google Scholar 

  11. Kirigia JM, Muthuri RDK, Nabyonga-Orem J, Kirigia DG (2015) BMC Public Health 2015(15):1–13

    Google Scholar 

  12. Martínez-Santos P (2017) Int J Water Resour Dev 33(4):514–533

    Google Scholar 

  13. Moghim S, Garna RK (2019) J Environ Manage 230:345–354

    PubMed  Google Scholar 

  14. Lawens M, Eckhardt H, Gramel S (2019) Water Sci Technol 19:1809–1815

    Google Scholar 

  15. Dasgupta S, Gunda NSK, Mitra SK (2016) Environ Sci 2:931–941

    CAS  Google Scholar 

  16. Esfahani MR, Aktij SA, Dabaghian Z, Firouzjaei MD, Rahimpour A, Eke J, Escobar IC, Abolhassani M, Greenlee LF, Esfahani AR, Sadmani A, Koutahzadeh N (2018). Sep Purif Technol. https://doi.org/10.1016/j.seppur.2018.12.050

    Article  Google Scholar 

  17. Werber JR, Osuji CO, Elimelech M (2016) Nat Rev Mater 1(5):1–15

    Google Scholar 

  18. Zhang R, Liu Y, He M, Su Y, Zhao X, Elimelech M, Jiang Z (2016) Chem Soc Rev 45(21):5888–5924. https://doi.org/10.1039/c5cs00579e

    Article  CAS  PubMed  Google Scholar 

  19. Dobrowsky PH, Lombard M, Cloete WJ, Saayman M, Cloete TE, Carstens M, Khan S, Khan W (2015) Water Air Soil Pollut 226(3):1–14

    CAS  Google Scholar 

  20. Purkait MK, Sinha MK, Mondal P, Singh R (2018) Chapter 1—Introduction to membranes. Interface science and technology, stimuli responsive polymeric membranes—smart polymeric membranes. Elsevier. https://doi.org/10.1016/B978-0-12-813961-5.00001-2

  21. Kahrs C, Gühlstorf T, Schwellenbach J (2020) J Appl Polym Sci 137:1–19

    Google Scholar 

  22. Anis SF, Hashaikeh R, Hilal N (2019) J Water Process Eng 32:100941

    Google Scholar 

  23. Conrad TL, Roeder RK (2020) J Mech Behav Biomed Mater 106:103730

    CAS  PubMed  Google Scholar 

  24. Hussein MA, El-Shishtawy RM, Alamry KA, Asiri AM, Mohamed SA (2019) Environ Technol 40:2813–2824

    CAS  PubMed  Google Scholar 

  25. Lv D, Wang R, Tang G, Mou Z, Lei J, Han J, De Smedt S, Xiong R, Huang C (2019) ACS Appl Mater Interfaces 11:12880–12889

    CAS  PubMed  Google Scholar 

  26. Sidik AM, Othaman R, Anuar FH (2018) Sains Malaysiana 47:1181–1187

    CAS  Google Scholar 

  27. Ding H, Zhang J, He H, Zhu Y, Dionysiou DD, Liu Z, Zhao C (2021) Sci Total Environ 755:142658. https://doi.org/10.1016/j.scitotenv.2020.142658

    Article  CAS  PubMed  Google Scholar 

  28. Kanagaraj P, Mohamed IMA, Huang W, Liu C (2020) React Funct Polym 150:104538

    CAS  Google Scholar 

  29. Wei Z, Gu J, Ye Y, Fang M, Lang J, Yang D, Pan Z (2020) Surf Coatings Technol 381:125147

    CAS  Google Scholar 

  30. Wang Y, Li X, Dai X, Zhan Y, Ding X, Wang M, Wang X (2020) J Chem Technol Biotechnol 95:730–738

    CAS  Google Scholar 

  31. Ramadoss P, Regi T, Rahman MI, Arivuoli D (2020) J Appl Polym Sci 137:1–11

    Google Scholar 

  32. Arunagiri V, Prasannan A, Udomsin J, Lai J, Wang C, Hong P, Tsai HC (2020) Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.118081

    Article  Google Scholar 

  33. Carlo BV, Di Habert AC (2018) Matéria (Rio Janeiro).  https://doi.org/10.1590/S1517-707620180002.0400

    Article  Google Scholar 

  34. Bastarrachea L, Dhawan S, Sablani SS, Mah JH, Kang DH, Zhang J, Tang J (2010) J Food Sci. https://doi.org/10.1111/j.1750-3841.2010.01591.x

    Article  PubMed  Google Scholar 

  35. Scaffaro R, Maio A, Sutera, Fortunato GE, Morreale M (2019) Polymers 11:651. https://doi.org/10.3390/polym11040651

    Article  CAS  PubMed Central  Google Scholar 

  36. Hermann BG, Debeer L, De Wilde B, Blok K, Patel MK (2011) Polym Degrad Stab 96(6):1159–1171

    CAS  Google Scholar 

  37. Siracusa V (2019) Polymers 11(6):1066. https://doi.org/10.3390/polym11061066

    Article  CAS  PubMed Central  Google Scholar 

  38. Deng Y, Yu C, Wongwiwattana P, Thomas NL (2018) J Polym Environ 26:3802–3816

    CAS  Google Scholar 

  39. Zehetmeyer G, Meira SMM, Scheibel JM, Brito da Silva C, Rodembusch FS, Brandelli A, Soares RMD (2017) Polym Bull 2017(74):3243–3268

    Google Scholar 

  40. Tran RT, Naseri E, Kolasnikov A, Bai X, Yang J (2011) Biotechnol Appl Biochem 58(5):335–344. https://doi.org/10.1002/bab.44

    Article  CAS  PubMed  Google Scholar 

  41. Boyandin AN, Dvoinina LM, Sukovatyi AG, Sukhanova AA (2020) Polymers 12(9):1950. https://doi.org/10.3390/polym12091950

    Article  CAS  PubMed Central  Google Scholar 

  42. McGlohorn JB, Holder WD, Grimes LW, Thomas CB, Burg KJL (2004) Tissue Eng 10:505–514

    CAS  PubMed  Google Scholar 

  43. Adwan H, Fuller B, Seldon C, Davidson B, Seifalian A (2013) J Biomater Appl 28:250–261

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Ebrahimi M, Botelho M, Lu W, Monmaturapoj N (2020) J Biomed Mater Res B 108:1738–1753

    CAS  Google Scholar 

  45. Oliveira SA, Nunes Macedo JR, Rosa DS (2019) J Clean Product 217:32–41

    Google Scholar 

  46. Fayemiwo K, Chiarasumran N, Nabavi SA, Loponov K, Manovic V, Benyahia B, Vladisavljevic GT (2019) Ind Eng Chem Res 58(39):18160–18167

    CAS  Google Scholar 

  47. Alsebaeai MK, Otitoju TA, Makhtar MMZ, Ahmad AL (2020) J Ind Eng Chem 86:13–34

    CAS  Google Scholar 

  48. Coutinho Paula E, Amaral MCS (2017) Waste Management Research 35(5):456–470. https://doi.org/10.1177/0734242x16684383

    Article  CAS  Google Scholar 

  49. Lawler W, Alvarez-Gaitan J, Leslie G et al (2015) Desalination 357:45–54

    CAS  Google Scholar 

  50. Goswami KP, Pugazhenthi G (2020) J Environ Manag 268:110583. https://doi.org/10.1016/j.jenvman.2020.110583

    Article  CAS  Google Scholar 

  51. ASTM D882–18, Standard test method for tensile properties of thin plastic sheeting, ASTM International, West Conshohocken, PA, 2018. Available at www.astm.org. Accessed 19 July 2020

  52. Eo K, Hwang D, Lee K, Kim M, Choi K, Kwon YK (2017) Polym Eng Sci. https://doi.org/10.1002/pen.24546

    Article  Google Scholar 

  53. Correia PRC, Santana JS, Ramos IG, Sant’Ana AEG, Goulart HF, Druzian JI (2019) J Polym Environ 27:1781–1789

    CAS  Google Scholar 

  54. Koromilas N, Anastasopoulos C, Oikonomou E, Kallitsis J (2019) Polymers 11(1):59

    PubMed Central  Google Scholar 

  55. Mane S (2016) Can Chem Trans 4(2):210–225

    CAS  Google Scholar 

  56. Li J, Li X, Yu S, Hao J, Lu W, Shao Z, Yi B (2014) Energy Convers Manag 2014(85):323–327

    Google Scholar 

  57. Leppin J, Clark C, Behnken J, Harms C, Dyck A (2018) ECS Trans 86(13):629–642. https://doi.org/10.1149/08613.0629ecst

    Article  CAS  Google Scholar 

  58. Safari NHM, Hassan AR, Che WT, Che WI, Rozali S (2018) Chem Eng. https://doi.org/10.3311/PPch.12423

    Article  Google Scholar 

  59. Gaucher G, Marchessault RH, Leroux JC (2010) J Control Release 143(1):2–12. https://doi.org/10.1016/j.jconrel.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  60. Range S, Epple M (2012) RSC Adv 2:6650–6654

    CAS  Google Scholar 

  61. Chao AC, Yu SH, Chuang GS (2006) J Memb Sci 280:163–174

    CAS  Google Scholar 

  62. Das A, Ghosh P, Ganguly S, Banerjee D, Kargupta K (2018) J Appl Polym Sci 135:1–11

    Google Scholar 

  63. Lim JI, Park HK (2012) J Porous Mater 19:383–387

    CAS  Google Scholar 

  64. Da Silva LCE, Bertran CA, Gonçalves MC (2015) J Mater Sci 50(11):4122–4131

    Google Scholar 

  65. Neves ACC, Rohen LA, Mantovani DP, Carvalho JPRG, Vieira CMF, Lopes FPD, Simonassi NT, Luz FS, Monteiro SN (2020) J Mater Res Technol 9(2):1296–1304

    CAS  Google Scholar 

  66. Milo et al (2010) Nucl Acids Res 38(suppl 1):D750–D753 (BNID 101788)

    CAS  PubMed  Google Scholar 

  67. Carpintero-Tepole V, Brito-deFuente E, Torrestiana-Sánchez B (2013) Chem Eng Res Des 126:286–296. https://doi.org/10.1016/j.cherd.2017.08.023 (ISSN 0263-8762)

    Article  CAS  Google Scholar 

  68. Cai Y, Lv J, Feng J (2013) J Polym Environ 21:108–114

    CAS  Google Scholar 

  69. Siyamak S, Ibrahim NA, Abdolmohammadi S, Zin W, Wan B, Zaki M, Rahman AB (2012) Molecules 50:1969–1991

    Google Scholar 

  70. Ferreira FV, Cividanes LS, Gouveia RF, Lona LMF (2019) Polym Eng Sci 59(2):E7–E15

    CAS  Google Scholar 

  71. Santos TT, Almeida TG, Morais DDS, Magalhães FD, Guedes RM, Canedo EL, Carvalho LH (2020) Polym Bull 2019(77):901–917

    Google Scholar 

  72. Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2016) Addit Manuf 10:47–57

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Federal University of ABC (UFABC), REVALORES Strategic Unit, and Multiuser Central Facilities (CEM—UFABC) for scientific, methodological, and technical support, to BASF S.A. for supplying the polymer used in the development (PBAT), and to GreenDelta for providing open access to the software openLCA and ecoinvent database.

Funding

Financial support was provided by the National Council for Scientific and Technological Development (CNPq) (305819/2017-8), Coordination for the Improvement of Higher Education Personnel (CAPES) (88882.451553/2019-01), and the São Paulo State Research Support Foundation (FAPESP) (n° 2018/11277-7 and n° 2019/16301-6), to whom the authors thank.

Author information

Authors and Affiliations

Authors

Contributions

SAO—Conceptualization, methodology, validation, formal analysis, investigation, data curation, writing—original draft, visualization. PHC—Validation, formal analysis, investigation, data curation, writing—original draft, visualization. RFSB—formal analysis, investigation, data curation, visualization, validation, writing—review & editing. DBR—data curation, software; supervision; validation; writing—review & editing. SKM—conceptualization, writing—review & editing, supervision, project administration, funding acquisition. DSR—conceptualization, investigation, resources, writing—review & editing, supervision, project administration, funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Derval dos Santos Rosa.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, S.A., Camani, P.H., da Silva Barbosa, R.F. et al. PBAT-based Microfiltration Membranes Using Porogen Saturated Solutions: Architecture, Morphology, and Environmental Profile. J Polym Environ 30, 270–294 (2022). https://doi.org/10.1007/s10924-021-02189-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02189-0

Keywords

Navigation