Skip to main content
Log in

Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

We investigated the coexistence of superconductivity and antiferromagnetic order in the compound Er2O2Bi with anti-ThCr2Si2-type structure through resistivity, magnetization, specific heat measurements and first-principle calculations. The superconducting transition temperature Tc of 1.23 K and antiferromagnetic transition temperature TN of 3 K are observed in the sample with the best nominal composition. The superconducting upper critical field Hc2(0) and electron-phonon coupling constant λeph in Er2O2Bi are similar to those in the previously reported non-magnetic superconductor Y2O2Bi with the same structure, indicating that the superconductivity in Er2O2 Bi may have the same origin as in Y2O2Bi. The first-principle calculations of Er2O2Bi show that the Fermi surface is mainly composed of the Bi 6p orbitals both in the paramagnetic and antiferromagnetic state, implying minor effect of the 4f electrons on the Fermi surface. Besides, upon increasing the oxygen incorporation in Er2OxBi, Tc increases from 1 to 1.23 K and TN decreases slightly from 3 K to 2.96 K, revealing that superconductivity and antiferromagnetic order may compete with each other. The Hall effect measurements indicate that hole-type carrier density indeed increases with increasing oxygen content, which may account for the variations of Tc and TN with different oxygen content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. N. Bulaevskii, A. I. Buzdin, M. L. Kulić, and S. V. Panjukov, Coexistence of superconductivity and magnetism theoretical predictions and experimental results, Adv. Phys. 34(2), 175 (1985)

    Article  ADS  Google Scholar 

  2. P. W. Anderson, Theory of dirty superconductors, J. Phys. Chem. Solids 11(1–2), 26 (1959)

    Article  ADS  MATH  Google Scholar 

  3. O. Fischer and L. B. Maple, Superconductivity in Ternary Compounds (I): Structural, Electronic, and Lattice Properties, Vol. 32, Springer Science & Business Media, 2012

  4. M. B. Maple and Ø. Fischer, in: Superconductivity in Ternary Compounds (II), Vol. 34, pp 1–10, Springer, Boston, MA, 1982

    Google Scholar 

  5. D. M. Paul, H. A. Mook, A. W. Hewat, B. C. Sales, L. A. Boatner, J. R. Thompson, and M. Mostoller, Magnetic ordering in the high-temperature superconductor GdBa2Cu3O7, Phys. Rev. B 37(4), 2341 (1988)

    Article  ADS  Google Scholar 

  6. B. D. Dunlap, M. Slaski, D. G. Hinks, L. Soderholm, M. Beno, K. Zhang, C. Segre, G. W. Crabtree, W. K. Kwok, S. K. Malik, I. K. Schuller, J. D. Jorgensen, and Z. Sungaila, Electronic and magnetic properties of rare-earth ions in REBa2Cu3O7−x (RE = Dy, Ho, Er), J. Magn. Magn. Mater. 68(2), L139 (1987)

    Article  Google Scholar 

  7. B. D. Dunlap, M. Slaski, Z. Sungaila, D. G. Hinks, K. Zhang, C. Segre, S. K. Malik, and E. E. Alp, Magnetic ordering of Gd and Cu in superconducting and nonsuperconducting GdBa2CusO7−δ, Phys. Rev. B 37(1), 592 (1988)

    Article  ADS  Google Scholar 

  8. Z. Zou, J. Ye, K. Oka, and Y. Nishihara, Superconducting PrBa2Cu3Ox, Phys. Rev. Lett. 80(5), 1074 (1998)

    Article  ADS  Google Scholar 

  9. H. Eisaki, H. Takagi, R. J. Cava, B. Batlogg, J. J. Krajewski, K. Peck, J. O. Mizuhashi, J. O. Lee, and S. Uchida, Competition between magnetism and superconductivity in rare-earth nickel boride carbides, Phys. Rev. B 50(1), 647 (1994)

    Article  ADS  Google Scholar 

  10. K. H. Müller and V. N. Narozhnyi, Interaction of superconductivity and magnetism in borocarbide superconductors, Rep. Prog. Phys. 64(8), 943 (2001)

    Article  ADS  Google Scholar 

  11. Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt, J. W. Lynn, and J. Paglione, Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors, Sci. Adv. 1(5), e1500242 (2015)

    Article  ADS  Google Scholar 

  12. For example, Y. Luo, H. Han, S. Jiang, X. Lin, Y. Li, J. Dai, G. Cao, and Z. A. Xu, Interplay of superconductivity and Ce 4f magnetism in CeFeAs1−xPxO0.95F0.05, Phys. Rev. B 83(5), 054501 (2011)

    Article  ADS  Google Scholar 

  13. W. A. Fertig, D. C. Johnston, L. E. De Long, R. W. McCallum, M. B. Maple, and B. T. Matthias, Destruction of superconductivity at the onset of long-range magnetic order in the compound ErRh4B4, Phys. Rev. Lett. 38(17), 987 (1977)

    Article  ADS  Google Scholar 

  14. M. Ishikawa and Ø. Fischer, Destruction of superconductivity by magnetic ordering in Ho1.2Mo6S8, Solid State Commun. 23(1), 37 (1977)

    Article  ADS  Google Scholar 

  15. M. Ishikawa, Ø. Fischer, and J. Muller, in: Superconductivity in Ternary Compounds II, pp 143–165, Springer, 1982

  16. L. Jiao, S. Howard, S. Ran, Z. Wang, J. O. Rodriguez, M. Sigrist, Z. Wang, N. P. Butch, and V. Madhavan, Chiral superconductivity in heavy-fermion metal UTe2, Nature 579(7800), 523 (2020)

    Article  ADS  Google Scholar 

  17. R. Sei, H. Kawasoko, K. Matsumoto, M. Arimitsu, K. Terakado, D. Oka, S. Fukuda, N. Kimura, H. Kasai, E. Nishibori, K. Ohoyama, A. Hoshikawa, T. Ishigaki, T. Hasegawa, and T. Fukumura, Tetragonality induced superconductivity in anti-ThCr2Si2-type RE2O2Bi (RE = Rare Earth) with Bi square nets, Dalton Trans. 49(10), 3321 (2020)

    Article  Google Scholar 

  18. R. Sei, S. Kitani, T. Fukumura, H. Kawaji, and T. Hasegawa, Two-dimensional superconductivity emerged at monatomic Bi2 square net in layered Y2O2Bi via oxygen incorporation, J. Am. Chem. Soc. 138(35), 11085 (2016)

    Article  Google Scholar 

  19. L. Qiao, J. Chen, B. Lv, X. Yang, J. Wu, Y. Cui, H. Bai, M. Li, Y. Li, Z. Ren, J. Dai, and Z. Xu, Antiferromagnetic Kondo lattice compound Ce2O2Bi with anti-ThCr2Si2-type structure, J. Alloys Compd. 836, 155229 (2020)

    Article  Google Scholar 

  20. K. Terakado, R. Sei, H. Kawasoko, T. Koretsune, D. Oka, T. Hasegawa, and T. Fukumura, Superconductivity in anti-ThCr2Si2-type Er2O2Bi induced by incorporation of excess oxygen with CaO oxidant, Inorg. Chem. 57(17), 10587 (2018)

    Article  Google Scholar 

  21. B. H. Toby, EXPGUI, a graphical user interface for GSAS, J. Appl. Cryst. 34(2), 210 (2001)

    Article  Google Scholar 

  22. G. Kresse and J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B 47(1), 558 (1993)

    Article  ADS  Google Scholar 

  23. G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54(16), 11169 (1996)

    Article  ADS  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  ADS  Google Scholar 

  25. H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13(12), 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. V. I. Anisimov, J. Zaanen, and O. K. Andersen, Band theory and Mott insulators: Hubbard U instead of Stoner I, Phys. Rev. B 44(3), 943 (1991)

    Article  ADS  Google Scholar 

  27. V. I. Anisimov and O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals, Phys. Rev. B 43(10), 7570 (1991)

    Article  ADS  Google Scholar 

  28. V. N. Antonov, B. N. Harmon, and A. N. Yaresko, Electronic structure of mixed-valence and charge-ordered Sm and Eu pnictides and chalcogenides, Phys. Rev. B 72(8), 085119 (2005)

    Article  ADS  Google Scholar 

  29. C. Xu, Q. Chen, and C. Cao, Unique crystal field splitting and multiband RKKY interactions in Ni-doped EuRbFe4As4, Commun. Phys. 2, 16 (2019)

    Article  ADS  Google Scholar 

  30. H. Wang, C. Dong, Q. Mao, R. Khan, X. Zhou, C. Li, B. Chen, J. Yang, Q. Su, and M. Fang, Multiband superconductivity of heavy electrons in a TlNi2Se2 single crystal, Phys. Rev. Lett. 111(20), 207001 (2013)

    Article  ADS  Google Scholar 

  31. S. V. Shulga, S. L. Drechsler, G. Fuchs, K. H. Müller, K. Winzer, M. Heinecke, and K. Krug, Upper critical field peculiarities of superconducting YNi2B2C and LuNi2B2C, Phys. Rev. Lett. 80(8), 1730 (1998)

    Article  ADS  Google Scholar 

  32. F. Hunte, J. Jaroszynski, A. Gurevich, D. C. Larbalestier, R. Jin, A. S. Sefat, M. A. Mc Guire, B. C. Sales, D. K. Christen, and D. Mandrus, Two-band superconductivity in La FeAsO0.89F0.11 at very high magnetic fields, Nature 453(7197), 903 (2008)

    Article  ADS  Google Scholar 

  33. H. Bai, X. Yang, Y. Liu, M. Zhang, M. Wang, Y. Li, J. Ma, Q. Tao, Y. Xie, G. H. Cao, and Z. A. Xu, Superconductivity in a misfit layered compound (SnSe)1.16(NbSe2), J. Phys.: Condens. Matter 30(35), 355701 (2018)

    ADS  Google Scholar 

  34. A. Gurevich, Enhancement of the upper critical field by nonmagnetic impurities in dirty two-gap superconductors, Phys. Rev. B 67(18), 184515 (2003)

    Article  ADS  Google Scholar 

  35. Y. Takeda, N. Duc Dung, Y. Nakano, T. Ishikura, S. Ikeda, T. D. Matsuda, E. Yamamoto, Y. Haga, T. Takeuchi, R. Settai, et al., Calorimetric study in single crystalline RCu2Si2 (R: Rare Earth), J. Phys. Soc. Jpn. 77(10), 104710 (2008)

    Article  ADS  Google Scholar 

  36. W. L. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167(2), 331 (1968)

    Article  ADS  Google Scholar 

  37. T. Moriya, Spin fluctuations in nearly antiferromagnetic metals, Phys. Rev. Lett. 24(25), 1433 (1970)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yifeng Yang, and Jianhui Dai for insightful discussions. This work was supported by the National Key R&D Projects of China (Grant Nos. 2019YFA0308602 and 2016YFA0300402), the National Natural Science Foundation of China (Grant No. 11774305), and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-An Xu.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1076-7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, L., Wu, Nh., Li, T. et al. Coexistence of superconductivity and antiferromagentic order in Er2O2Bi with anti-ThCr2Si2 structure. Front. Phys. 16, 63501 (2021). https://doi.org/10.1007/s11467-021-1076-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1076-7

Keywords

Navigation