Skip to main content
Log in

DTI Atlases Evaluations

  • Original Article
  • Published:
Neuroinformatics Aims and scope Submit manuscript

Abstract

The cerebral atlas of diffusion tensor magnetic resonance image (DT-MRI, shorted as DTI) is one of the key issues in neuroimaging research. It is crucial for comparisons of neuronal structural integrity and connectivity across populations. Usually, the atlas is constructed by iteratively averaging the registered individual image. In tradition, the fuzzy group average image is easily generated in the initial stage, which is harmful to providing clear guidance for subsequent registration, to the performance of the final atlas. To solve this problem, an improved unbiased DTI atlas construction algorithm based on adaptive weights is proposed in this paper. The adaptive weighted strategy based on diffeomorphic deformable tensor registration is introduced. At the same time, the distance measure for tensors is used as a constraint condition, which ensures the unbiasedness of the atlas. Then, using 77 DTIs from the dataset in http://www.brain-development.org, three study-specific atlases, i.e. the constructed atlases of the proposed algorithm and two open-sourced algorithms (DTIAtlasBuilder and DTI-TK), are compared with two standardized atlases (IIT v. 4.1 and NTU-DSI-122-DTI). The performances of the atlases were evaluated in spatial normalization way with six region-based criteria (including Euclidean distances between diffusion tensors, Euclidean distances of the deviatoric tensors, standard deviation, overlaps of eigenvalue-eigenvector, cross-correlations and three sets angles of eigenvalue-eigenvector pairs between diffusion tensors) and three fiber-based criteria (including distances between fiber bundles, angles between fiber bundles and fiber property profile-based criteria). The experimental results showed that the overall performances of the study-specific atlases are better than those of the standardized atlases for specific datasets, and the comprehensive performance of the improved algorithm proposed in this paper is the best.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Adluru, N., Zhang, H., Fox, A. S., Shelton, S. E., Ennis, C. M., Bartosic, A. M., Oler, J. A., Tromp, D. P. M., Zakszewski, E., Gee, J. C., Kalin, N. H., & Alexander, A. L. (2012). A diffusion tensor brain template for rhesus macaques. NeuroImage, 59, 306–318.

  • Fréchet, M. (1948). Les éléments Aléatoires de Nature Quelconque dans une Espace Distancié. Ann Inst H Poincaré, 10, 215–310.

    Google Scholar 

  • Hsu, Y.-C., Lo, Y.-C., Chen, Y.-J., Wedeen, V., & Tseng, W.-Y. (2015). NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum Brain Mapp, 36, 3528–3541.

    Article  Google Scholar 

  • Irfanoglu, M. O., Nayak, A., Jenkins, J., Hutchinson, E. B., Sadeghi, N., Thomas, C. P., & Pierpaoli, C. (2016). DR-TAMAS: Diffeomorphic registration for tensor accurate alignment of anatomical structures. NeuroImage, 132, 439–454.

    Article  Google Scholar 

  • Jiang, H., Van Zijl, P., Kim, J., Pearlson, G. D., & Mori, S. (2006). DTIStudio: Resource program for diffusion tensor computation and fiber bundle tracking. Comput Methods Prog Biomed, 81, 106–116.

    Article  Google Scholar 

  • Joshi, S., Davis, B., Jomier, M., & Gerig, G. (2004). Unbiased Diffeomorphic atlas construction for computational anatomy. NeuroImage, 23(Suppl 1), S151–S160.

    Article  Google Scholar 

  • Liu, W. (2012). Research on digital statistical atlas of three-dimensional human brain diffusion tensor imaging. University of Science and Technology of China.

  • Mori, S., Oishi, K., Jiang, H., Jiang, L., Li, X., Akhter, K., Hua, K., Faria, A. V., Mahmood, A., Woods, R., Toga, A. W., Pike, G. B., Neto, P. R., Evans, A., Zhang, J., Huang, H., Miller, M. I., van Zijl, P., & Mazziotta, J. (2008). Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage, 40, 570–582.

    Article  Google Scholar 

  • Nucifora, P. G. P., Wu, X., Melhem, E. R., Gur, R. E., Gur, R. C., & Verma, R. (2012). Automated diffusion tensor Tractography: Implementation and comparison to user-driven Tractography. Acad Radiol, 19, 622–629.

    Article  Google Scholar 

  • Peng, H., Orlichenko, A., Dawe, R. J., Agam, G., Zhang, S., & Arfanakis, K. (2009). Development of a human brain diffusion tensor template. NeuroImage, 46, 967–980.

    Article  Google Scholar 

  • Suarez, R. O., Commowick, O., Prabhu, S. P., & Warfield, S. K. (2011). Automated delineation of white matter fiber tracts with a multiple region-of-interest approach. NeuroImage, 59, 3690–3700.

    Article  Google Scholar 

  • Van Hecke, W., Leemans, A., D'Agostino, E., De Backer, S., Vandervliet, E., Parizel, P. M., et al. (2007). Nonrigid Coregistration of diffusion tensor images using a viscous fluid model and mutual information. IEEE Trans Med Imaging, 26, 1598–1612.

    Article  Google Scholar 

  • Van Hecke, W., Leemans, A., Sage, C. A., Emsell, L., Veraart, J., Sijbers, J., et al. (2011). The effect of template selection on diffusion tensor voxel-based analysis results. NeuroImage, 55, 566–573.

    Article  Google Scholar 

  • Varentsova, A., Zhang, S., & Arfanakis, K. (2014). Development of a high angular resolution diffusion imaging human brain template. NeuroImage, 91, 177–186.

    Article  Google Scholar 

  • Verde, A. R., Budin, F., Berger, J.-B., Gupta, A., Farzinfar, M., Kaiser, A., et al. (2014). UNC-Utah NA-MIC framework for DTI fiber tract analysis. Frontiers in neuroinformatics, 7, 51.

    Article  Google Scholar 

  • Wang, Y., Gupta, A., Liu, Z., Zhang, H., Escolar, M. L., Gilmore, J. H., Gouttard, S., Fillard, P., Maltbie, E., Gerig, G., & Styner, M. (2011). DTI registration in atlas based fiber analysis of infantile Krabbe disease. NeuroImage, 55, 1577–1586.

    Article  Google Scholar 

  • Wu, G., Jia, H., Wang, Q., & Shen, D. (2011). SharpMean: Groupwise registration guided by sharp mean image and tree-based registration. NeuroImage, 56, 1968–1981.

    Article  Google Scholar 

  • Zhang, H., Yushkevich, P. A., Alexander, D. C., & Gee, J. C. (2006). Deformable registration of diffusion tensor MR images with explicit orientation optimization. Med Image Anal, 10(5), 764–785.

    Article  Google Scholar 

  • Zhang, H., Yushkevich, P. A., Rueckert, D., & Gee, J. C. (2007). Unbiased White Matter Atlas Construction Using Diffusion Tensor Images (Vol. 10).

  • Zhang, S., & Arfanakis, K. (2014). White matter segmentation based on a skeletonized atlas: Effects on diffusion tensor imaging studies of regions of interest. Journal of magnetic resonance imaging : JMRI, 40.

  • Zhang, S., Peng, H., Dawe, R. J., & Arfanakis, K. (2011). Enhanced ICBM diffusion tensor template of the human brain. NeuroImage, 54, 974–984.

    Article  Google Scholar 

  • Zhang, Y., Zhang, J., Oishi, K., Faria, A. V., Jiang, H., Li, X., Akhter, K., Rosa-Neto, P., Pike, G. B., Evans, A., Toga, A. W., Woods, R., Mazziotta, J. C., Miller, M. I., van Zijl, P. C. M., & Mori, S. (2010). Atlas-guided tract reconstruction for automated and comprehensive examination of the white matter anatomy. NeuroImage, 52, 1289–1301.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (62071384), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-311) and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University of China (CX2020172).

Availability of Data and Material

The diffusion MRI data (http://www.brain-development.org) from Hammersmith hospital in London, UK is chosen in this paper.

Funding

This work was supported by the National Natural Science Foundation of China (62071384), the Natural Science Basic Research Plan in Shaanxi Province of China (2019JM-311) and the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical University of China (CX2020172).

Author information

Authors and Affiliations

Authors

Contributions

In this paper, we propose an improved unbiased DTI atlas construction algorithm based on adaptive weights. The adaptive weighted strategy based on diffeomorphic deformable tensor registration is introduced. At the same time, the distance measure for tensors is used as a constraint condition, which ensures the unbiasedness of the atlas. Then, using 77 DTIs, three study-specific atlases, i.e. the constructed atlases of the proposed algorithm and two open-sourced algorithms (DTIAtlasBuilder and DTI-TK), are compared with two standardized atlases (IIT v. 4.1 and NTU-DSI-122-DTI). The performances of the atlases were evaluated in spatial normalization way with six region-based criteria (including Euclidean distances between diffusion tensors, Euclidean distances of the deviatoric tensors, standard deviation, overlaps of eigenvalue-eigenvector, cross-correlations and three sets angles of eigenvalue-eigenvector pairs between diffusion tensors) and three fiber-based criteria (including distances between fiber bundles, angles between fiber bundles and fiber property profile-based criteria).

Corresponding author

Correspondence to Yilong Niu.

Ethics declarations

Conflicts of Interest/Competing Interests

No conflict of interest exists in the submission of this manuscript, and the manuscript is approved by all authors for publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xu, M., Geng, L. et al. DTI Atlases Evaluations. Neuroinform 20, 327–351 (2022). https://doi.org/10.1007/s12021-021-09521-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12021-021-09521-y

Keywords

Navigation