Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath

Abstract

The analysis of volatile organic compounds (VOCs) within breath for noninvasive disease detection and monitoring is an emergent research field that has the potential to reshape current clinical practice. However, adoption of breath testing has been limited by a lack of standardization. This protocol provides a comprehensive workflow for online and offline breath analysis using selected ion flow tube mass spectrometry (SIFT-MS). Following the suggested protocol, 50 human breath samples can be analyzed and interpreted in <3 h. Key advantages of SIFT-MS are exploited, including the acquisition of real-time results and direct compound quantification without need for calibration curves. The protocol includes details of methods developed for targeted analysis of disease-specific VOCs, specifically short-chain fatty acids, aldehydes, phenols, alcohols and alkanes. A procedure to make custom breath collection bags is also described. This standardized protocol for VOC analysis using SIFT-MS is intended to provide a basis for wider application and the use of breath analysis in clinical studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Breath analysis by SIFT-MS.
Fig. 2: Sampling bag types.
Fig. 3: Inlet setups.
Fig. 4: SIFT-MS traces.
Fig. 5: Compromised breath samples.

Similar content being viewed by others

Data availability

Examples of data obtained while carrying out this protocol are included in Figs. 3 and 4 and Supplementary Table 2. The data reported in Supplementary Table 2 were obtained during the clinical study described in ref. 4.

References

  1. European Parliament and the Council of 21 April 2004. Emissions of volatile organic compounds in paints, varnishes and vehicle refinishing products. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004L0042 (2004).

  2. Spanel, P. & Smith, D. Progress in SIFT-MS: breath analysis and other applications. Mass Spectrom. Rev. 30, 236–267 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Smith, D. & Španěl, P. On the importance of accurate quantification of individual volatile metabolites in exhaled breath. J. Breath Res. 11, 047106 (2017).

    Article  PubMed  Google Scholar 

  4. Markar, S. R. et al. Assessment of a noninvasive exhaled breath test for the diagnosis of oesophagogastric cancer. JAMA Oncol. 4, 970–976 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vadhwana, B. et al. Impact of oral cleansing strategies on exhaled volatile organic compound levels. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8706 (2019).

  6. Oakley-Girvan, I. & Davis, S. W. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: a systematic review. Cancer Biomark. 21, 29–39 (2017).

    Article  PubMed  Google Scholar 

  7. Pauling, L., Robinson, A. B., Teranishi, R. & Cary, P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl Acad. Sci. USA 68, 2374–2376 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. de Lacy Costello, B. et al. A review of the volatiles from the healthy human body. J. Breath. Res. 8, 014001 (2014).

    Article  PubMed  Google Scholar 

  9. Schleich, F. N. et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med. 200, 444–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Fowler, S. J., Basanta-Sanchez, M., Xu, Y., Goodacre, R. & Dark, P. M. Surveillance for lower airway pathogens in mechanically ventilated patients by metabolomic analysis of exhaled breath: a case-control study. Thorax 70, 320–325 (2015).

    Article  PubMed  Google Scholar 

  11. Woodfield, G. et al. Feasibility and acceptability of breath research in primary care: a prospective, cross-sectional, observational study. BMJ Open 11, e044691 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Henderson, B. et al. A benchmarking protocol for breath analysis: the peppermint experiment. J. Breath. Res. 14, 046008 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Hanna, G. B., Boshier, P. R., Markar, S. R. & Romano, A. Accuracy and methodologic challenges of volatile organic compound-based exhaled breath tests for cancer diagnosis: a systematic review and meta-analysis. JAMA Oncol. 5, e182815 (2019).

    Article  PubMed  Google Scholar 

  14. Aksenov, A. A. et al. Auto-deconvolution and molecular networking of gas chromatography–mass spectrometry data. Nat. Biotechnol. 39, 169–173 (2021).

    Article  CAS  Google Scholar 

  15. Biagini, D. et al. Determination of volatile organic compounds in exhaled breath of heart failure patients by needle trap micro-extraction coupled with gas chromatography-tandem mass spectrometry. J. Breath. Res. 11, 047110 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Bruderer, T. et al. On-line analysis of exhaled breath focus review. Chem. Rev. 119, 10803–10828 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Smith, D. & Spanel, P. Direct, rapid quantitative analyses of BVOCs using SIFT-MS and PTR-MS obviating sample collection. Trends Anal. Chem. 30, 945–959 (2011).

    Article  CAS  Google Scholar 

  18. Wiley Science Solutions. NIST/EPA/NIH Mass Spectral Library 2020. https://sciencesolutions.wiley.com/solutions/technique/gc-ms/nist-epa-nih-mass-spectral-library-2020-2/

  19. Wiley Science Solutions. Wiley Registry of Mass Spectral Data, 12th Edition. https://sciencesolutions.wiley.com/solutions/technique/gc-ms/wiley-registry-of-mass-spectral-data-12th-edition/

  20. Chin, S. T., Romano, A., Doran, S. L. F. & Hanna, G. B. Cross-platform mass spectrometry annotation in breathomics of oesophageal-gastric cancer. Sci. Rep. 8, 5139 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martinez-Lozano, P., Rus, J., Fernandez de la Mora, G., Hernandez, M. & Fernandez de la Mora, J. Secondary electrospray ionization (SESI) of ambient vapors for explosive detection at concentrations below parts per trillion. J. Am. Soc. Mass Spectrom. 20, 287–294 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Montuschi, P., Mores, N., Trove, A., Mondino, C. & Barnes, P. J. The electronic nose in respiratory medicine. Respiration 85, 72–84 (2013).

    Article  PubMed  Google Scholar 

  23. Behera, B., Joshi, R., Anil Vishnu, G. K., Bhalerao, S. & Pandya, H. J. Electronic nose: a non-invasive technology for breath analysis of diabetes and lung cancer patients. J. Breath. Res. 13, 024001 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Costanzo, M. T. et al. Portable FAIMS: applications and future perspectives. Int. J. Mass Spectrom. 422, 188–196 (2017).

    Article  CAS  PubMed  Google Scholar 

  25. Covington, J. A. et al. The application of FAIMS gas analysis in medical diagnostics. Analyst 140, 6775–6781 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Cortes, J. J., Bruneel, J., Ramirez, M. & Walgraeve, C. Effect of hydrophobic fumed silica addition on a biofilter for pentane removal using SIFT-MS. Chemosphere 254, 126738 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Smith, D., Cheng, P. & Spanel, P. Analysis of petrol and diesel vapour and vehicle engine exhaust gases using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 16, 1124–1134 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Spanel, P. & Smith, D. Quantification of volatile metabolites in exhaled breath by selected ion flow tube mass spectrometry, SIFT-MS. Clin. Mass Spectrom. 16, 18–24 (2020).

    Article  Google Scholar 

  29. Langford, V. S., Padayachee, D., McEwan, M. J. & Barringer, S. A. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour Fragr. J. 34, 393–410 (2019).

    Article  CAS  Google Scholar 

  30. La Nasa, J. et al. SIFT-ing archaeological artifacts: selected ion flow tube-mass spectrometry as a new tool in archaeometry. Talanta 207, 120323 (2020).

    Article  PubMed  Google Scholar 

  31. Smith, D., Spanel, P., Herbig, J. & Beauchamp, J. Mass spectrometry for real-time quantitative breath analysis. J. Breath. Res. 8, 027101 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Smith, D. & Spanel, P. Status of selected ion flow tube MS: accomplishments and challenges in breath analysis and other areas. Bioanalysis 8, 1183–1201 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Smith, D., McEwan, M. J. & Spanel, P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube-mass spectrometry analyses. Anal. Chem. 92, 12750–12762 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Spanel, P., Dryahina, K. & Smith, D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 249, 230–239 (2006).

    Article  Google Scholar 

  35. Spanel, P., Ji, Y. F. & Smith, D. SIFT studies of the reactions of H3O+, NO+ and O-2(+) with a series of aldehydes and ketones. Int. J. Mass Spectrom. 165, 25–37 (1997).

    Article  Google Scholar 

  36. Lawal, O., Ahmed, W. M., Nijsen, T. M. E., Goodacre, R. & Fowler, S. J. Exhaled breath analysis: a review of ‘breath-taking’ methods for off-line analysis. Metabolomics 13, 110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Doran, S. L. F., Romano, A. & Hanna, G. B. Optimisation of sampling parameters for standardised exhaled breath sampling. J. Breath. Res. 12, 016007 (2017).

    Article  PubMed  Google Scholar 

  38. Boshier, P. R. et al. On-line, real time monitoring of exhaled trace gases by SIFT-MS in the perioperative setting: a feasibility study. Analyst 136, 3233–3237 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Adam, M. E. et al. Mass-spectrometry analysis of mixed-breath, isolated-bronchial-breath, and gastric-endoluminal-air volatile fatty acids in esophagogastric cancer. Anal. Chem. 91, 3740–3746 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Ghimenti, S. et al. Comparison of sampling bags for the analysis of volatile organic compounds in breath. J. Breath. Res. 9, 047110 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Brůhová Michalčíková, R., Dryahina, K., Smith, D. & Španěl, P. Volatile compounds released by Nalophan; implications for selected ion flow tube mass spectrometry and other chemical ionisation mass spectrometry analytical methods. Rapid Commun. Mass Spectrom. https://doi.org/10.1002/rcm.8602 (2019).

  42. Horváth, I. et al. A European Respiratory Society technical standard: exhaled biomarkers in lung disease. Eur. Respir. J. 49, https://doi.org/10.1183/13993003.00965-2016 (2017).

  43. Blanchet, L. et al. Factors that influence the volatile organic compound content in human breath. J. Breath. Res. 11, 016013 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Agarwal, A. R., Yin, F. & Cadenas, E. Short-term cigarette smoke exposure leads to metabolic alterations in lung alveolar cells. Am. J. Respir. Cell Mol. Biol. 51, 284–293 (2014).

    Article  PubMed  Google Scholar 

  45. Capone, S. et al. Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers. Biomed. Chromatogr. https://doi.org/10.1002/bmc.4132 (2017).

  46. Ajibola, O. A., Smith, D., Spanel, P. & Ferns, G. A. Effects of dietary nutrients on volatile breath metabolites. J. Nutr. Sci. 2, e34 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Baranska, A. et al. Profile of volatile organic compounds in exhaled breath changes as a result of gluten-free diet. J. Breath. Res. 7, 037104 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Smith, D., Spanel, P. & Davies, S. Trace gases in breath of healthy volunteers when fasting and after a protein-calorie meal: a preliminary study. J. Appl. Physiol. (1985) 87, 1584–1588 (1999).

    Article  CAS  Google Scholar 

  49. Bovey, F. et al. Breath acetone as a marker of energy balance: an exploratory study in healthy humans. Nutr. Diabetes 8, 50 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Heaney, L. M. & Lindley, M. R. Translation of exhaled breath volatile analyses to sport and exercise applications. Metabolomics 13, 139 (2017).

    Article  Google Scholar 

  51. Decombaz, J. et al. Effect of short-duration lipid supplementation on fat oxidation during exercise and cycling performance. Appl. Physiol. Nutr. Metab. 38, 766–772 (2013).

    Article  CAS  PubMed  Google Scholar 

  52. Couto, M. et al. Oxidative stress in asthmatic and non-asthmatic adolescent swimmers— a breathomics approach. Pediatr. Allergy Immunol. 28, 452–457 (2017).

    Article  PubMed  Google Scholar 

  53. Turner, C., Spanel, P. & Smith, D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 27, 321–337 (2006).

    Article  PubMed  Google Scholar 

  54. Phillips, M., Greenberg, J. & Sabas, M. Alveolar gradient of pentane in normal human breath. Free Radic. Res. 20, 333–337 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Spanel, P., Dryahina, K. & Smith, D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath. Res. 7, 017106 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Harshman, S. W. et al. Characterization of standardized breath sampling for off-line field use. J. Breath. Res. 14, 016009 (2019).

    Article  PubMed  Google Scholar 

  57. Want, E. J. et al. Global metabolic profiling of animal and human tissues via UPLC-MS. Nat. Protoc. 8, 17–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Want, E. J. et al. Global metabolic profiling procedures for urine using UPLC-MS. Nat. Protoc. 5, 1005–1018 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Trefz, P., Schubert, J. K. & Miekisch, W. Effects of humidity, CO2 and O2 on real-time quantitation of breath biomarkers by means of PTR-ToF-MS. J. Breath. Res. 12, 026016 (2018).

    Article  PubMed  Google Scholar 

  60. Kumar, S. et al. Selected ion flow tube mass spectrometry analysis of exhaled breath for volatile organic compound profiling of esophago-gastric cancer. Anal. Chem. 85, 6121–6128 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Slingers, G. et al. Real-time selected ion flow tube mass spectrometry to assess short- and long-term variability in oral and nasal breath. J. Breath. Res. 14, 036006 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. Boshier, P. R., Marczin, N. & Hanna, G. B. Repeatability of the measurement of exhaled volatile metabolites using selected ion flow tube mass spectrometry. J. Am. Soc. Mass Spectrom. 21, 1070–1074 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Boshier, P. R., Cushnir, J. R., Priest, O. H., Marczin, N. & Hanna, G. B. Variation in the levels of volatile trace gases within three hospital environments: implications for clinical breath testing. J. Breath. Res. 4, 031001 (2010).

    Article  CAS  PubMed  Google Scholar 

  64. Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 29, 5–15 (1983).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Q. Wen for figure editing and E. Want for her kind support and precious advice. P.R.B. and S.R.M. are supported by National Institute for Health Research (NIHR) lectureships. I.B. and A.M. are supported by Rosetrees and Stonygates Trusts and NIHR London In Vitro Diagnostics Co-operative. This research was supported by the NIHR Diagnostic Evidence Co-operative London at Imperial College Healthcare NHS Trust. The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR or the Department of Health.

Author information

Authors and Affiliations

Authors

Contributions

All the authors discussed the design of the manuscript. I.B., P.R.B., B.V. and S.R.M. carried out the experiments. I.B., P.R.B., A.M. and B.V. wrote the original draft of the manuscript. P.S. and G.B.H. supervised the projects and revised the manuscript.

Corresponding author

Correspondence to George B. Hanna.

Ethics declarations

Competing interests

G.B.H. is the founder of VODCA Limited, a company for early detection of cancer.

Additional information

Peer review information Nature Protocols thanks James Covington, Jean François Focant, Gudrun Koppen and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Markar, S. R. et al. JAMA Oncol. 4, 970-976 (2018): https://doi.org/10.1001/jamaoncol.2018.0991

Vadhwana, B. et al. Rapid Commun. Mass Spectrom. 34, e8706 (2019): https://doi.org/10.1002/rcm.8706

Key data used in this protocol

Markar, S. R. et al. JAMA Oncol. 4, 970-976 (2018): https://doi.org/10.1001/jamaoncol.2018.0991

Supplementary information

Supplementary Information

Supplementary Note 1 and Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belluomo, I., Boshier, P.R., Myridakis, A. et al. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath. Nat Protoc 16, 3419–3438 (2021). https://doi.org/10.1038/s41596-021-00542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-021-00542-0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research