Skip to main content
Log in

Synthetic Biology: Current State and Applications

  • REVIEWS
  • Published:
Molecular Genetics, Microbiology and Virology Aims and scope Submit manuscript

Abstract

This review is devoted to synthetic biology. In this field, molecular biology methods and techniques are applied to develop a predetermined cell behavior based on theoretically constructed regulatory networks using engineering approaches. A cell can be considered the device that performs several types of basic functions. These are sensory, information processing, and response formation functions. Endogenous and exogenous physical or chemical factors that trigger information processing cascades are input signals. These include signaling and metabolic pathways. As a rule, changes in these pathways lead to the modification of the transcriptional profile. The response includes alterations in the metabolic profile followed by physiological changes. Taking this into account, a cell and a computer can be considered analogs. Therefore, the principles of engineering can be applied to natural biological systems in general and genetic circuits in particular. In addition to the main areas of synthetic biology, as well as their principles and methods, specific examples of the application of the synthetic biology approach in medicine and other fields were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Monod, J. and Jacob, F., General conclusions: Teleonomic mechanisms in cellular metabolism, growth, and differentiation, Cold Spring Harbor Symp. Quant. Biol., 1961, vol. 26, pp. 389–401. https://doi.org/10.1101/SQB.1961.026.01.048

    Article  CAS  PubMed  Google Scholar 

  2. Cameron, D.E., Bashor, C.J., and Collins, J.J., A brief history of synthetic biology, Nat. Rev. Microbiol., 2014, vol. 12, no. 5, pp. 381–390. https://doi.org/10.1038/nrmicro3239

    Article  CAS  PubMed  Google Scholar 

  3. Gardner, T.S., Cantor, C.R., and Collins, J.J., Construction of a genetic toggle switch in Escherichia coli, Nature, 2000, vol. 403, no. 6767, pp. 339–342. https://doi.org/10.1038/35002131

    Article  CAS  PubMed  Google Scholar 

  4. Elowitz, M.B. and Leibler, S., A synthetic oscillatory network of transcriptional regulators, Nature, 2000, vol. 403, no. 6767, pp. 335–338. https://doi.org/10.1038/35002125

    Article  CAS  PubMed  Google Scholar 

  5. Weiss, R. and Knight, T.F., Engineered communications for microbial robotics, in Lecture Notes in Computer Science, vol. 2054: DNA Computing, Condon, A. and Rozenberg, G., Eds., Berlin, Heidelberg: Springer, 2001, pp. 1–16. https://doi.org/10.1007/3-540-44992-2_1

  6. Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H., and Weiss, R., A synthetic multicellular system for programmed pattern formation, Nature, 2005, vol. 434, no. 7037, pp. 1130–1134. https://doi.org/10.1038/nature03461

    Article  CAS  PubMed  Google Scholar 

  7. McAdams, H. and Shapiro, L., Circuit simulation of genetic networks, Science, 1995, vol. 269, no. 5224, pp. 650–656. https://doi.org/10.1126/science.7624793

    Article  CAS  PubMed  Google Scholar 

  8. Beal, J., Phillips, A., Densmore, D., and Cai, Y., High-level programming languages for biomolecular systems, in Design and Analysis of Biomolecular Circuits, Koeppl, H., Setti, G., di Bernardo, M., and Densmore, D., Eds., New York: Springer, 2011, pp. 225–252. https://doi.org/10.1007/978-1-4419-6766-4_11.

  9. Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., and Krasnogor, N., Conventional verification for unconventional computing: A genetic XOR gate example, Fundam. Inf., 2014, vol. 134, nos. 1–2, pp. 97–110. https://doi.org/10.3233/FI-2014-1093

    Article  Google Scholar 

  10. Tamsir, A., Tabor, J.J., and Voigt, C.A., Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’, Nature, 2011, vol. 469, no. 7329, pp. 212–215. https://doi.org/10.1038/nature09565

    Article  CAS  PubMed  Google Scholar 

  11. Weinberg, B.H., Pham, N.T.H., Caraballo, L.D., Lozanoski, T., Engel, A., Bhatia, S., et al., Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells, Nat. Biotechnol., 2017, vol. 35, no. 5, pp. 453–462. https://doi.org/10.1038/nbt.3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cardinale, S. and Arkin, A.P., Contextualizing context for synthetic biology—identifying causes of failure of synthetic biological systems, Biotechnol. J., 2012, vol. 7, no. 7, pp. 856–866. https://doi.org/10.1002/biot.201200085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Daniel, R., Rubens, J.R., Sarpeshkar, R., and Lu, T.K., Synthetic analog computation in living cells, Nature, 2013, vol. 497, no. 7451, pp. 619–623. https://doi.org/10.1038/nature12148

    Article  CAS  PubMed  Google Scholar 

  14. Wong, A., Wang, H., Poh, C.L., and Kitney, R.I., Layering genetic circuits to build a single cell, bacterial half adder, BMC Biol., 2015, vol. 13, no. 1, p. 40. https://doi.org/10.1186/s12915-015-0146-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rossetti, M., Del Grosso, E., Ranallo, S., Mariottini, D., Idili, A., Bertucci, A., et al., Programmable RNA-based systems for sensing and diagnostic applications, Anal. Bioanal. Chem., 2019, vol. 411, no. 19, pp. 4293–4302. https://doi.org/10.1007/s00216-019-01622-7

    Article  CAS  PubMed  Google Scholar 

  16. Ausländer, D., Ausländer, S., Pierrat, X., Hellmann, L., Rachid, L., and Fussenegger, M., Programmable full-adder computations in communicating three-dimensional cell cultures, Nat. Methods, 2018, vol. 15, no. 1, pp. 57–60. https://doi.org/10.1038/nmeth.4505

    Article  CAS  PubMed  Google Scholar 

  17. Gaj, T., Sirk, S.J., and Barbas, C.F., Expanding the scope of site-specific recombinases for genetic and metabolic engineering, Biotechnol. Bioeng., 2014, vol. 111, no. 1, pp. 1–15. https://doi.org/10.1002/bit.25096

    Article  CAS  PubMed  Google Scholar 

  18. Roquet, N., Soleimany, A.P., Ferris, A.C., Aaronson, S., and Lu, T.K., Synthetic recombinase-based state machines in living cells, Science, 2016, vol. 353, no. 6297, p. aad8559. https://doi.org/10.1126/science.aad8559

    Article  CAS  PubMed  Google Scholar 

  19. Carroll, D., Genome engineering with targetable nucleases, Annu. Rev. Biochem., 2014, vol. 83, no. 1, pp. 409–439. https://doi.org/10.1146/annurev-biochem-060713-035418

    Article  CAS  PubMed  Google Scholar 

  20. Pickar-Oliver, A. and Gersbach, C.A., The next generation of CRISPR-Cas technologies and applications, Nat. Rev. Mol. Cell Biol., 2019, vol. 20, no. 8, pp. 490–507. https://doi.org/10.1038/s41580-019-0131-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kocak, D.D., Josephs, E.A., Bhandarkar, V., Adkar, S.S., Kwon, J.B., and Gersbach, C.A., Increasing the specificity of CRISPR systems with engineered RNA secondary structures, Nat. Biotechnol., 2019, vol. 37, no. 6, pp. 657–666. https://doi.org/10.1038/s41587-019-0095-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brödel, A.K., Jaramillo, A., and Isalan, M., Engineering orthogonal dual transcription factors for multi-input synthetic promoters, Nat. Commun., 2016, vol. 7, no. 1, p. 13858. https://doi.org/10.1038/ncomms13858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stripecke, R., Oliveira, C.C., McCarthy, J.E., and Hentze, M.W., Proteins binding to 5' untranslated region sites: A general mechanism for translational regulation of mRNAs in human and yeast cells, Mol. Cell. Biol., 1994, vol. 14, no. 9, pp. 5898–5909. https://doi.org/10.1128/MCB.14.9.5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yen, L., Svendsen, J., Lee, J.S., Gray, J.T., Magnier, M., Baba, T., et al., Exogenous control of mammalian gene expression through modulation of RNA self-cleavage, Nature, 2004, vol. 431, no. 7007, pp. 471–476. https://doi.org/10.1038/nature02844

    Article  CAS  PubMed  Google Scholar 

  25. Ausländer, S., Ketzer, P., and Hartig, J.S., A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression, Mol. BioSyst., 2010, vol. 6, no. 5, p. 807. https://doi.org/10.1039/b923076a

    Article  CAS  PubMed  Google Scholar 

  26. Win, M.N. and Smolke, C.D., Higher-order cellular information processing with synthetic RNA devices, Science, 2008, vol. 322, no. 5900, pp. 456–460. https://doi.org/10.1126/science.1160311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rackham, O. and Chin, J.W., A network of orthogonal ribosome mRNA pairs, Nat. Chem. Biol., 2005, vol. 1, no. 3, pp. 159–166. https://doi.org/10.1038/nchembio719

    Article  CAS  PubMed  Google Scholar 

  28. Chen, Z., Lichtor, P.A., Berliner, A.P., Chen, J.C., and Liu, D.R., Evolution of sequence-defined highly functionalized nucleic acid polymers, Nat. Chem., 2018, vol. 10, no. 4, pp. 420–427. https://doi.org/10.1038/s41557-018-0008-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davis, L. and Chin, J.W., Designer proteins: Applications of genetic code expansion in cell biology, Nat. Rev. Mol. Cell Biol., 2012, vol. 13, no. 3, pp. 168–182. https://doi.org/10.1038/nrm3286

    Article  CAS  PubMed  Google Scholar 

  30. Forster, A.C., Tan, Z., Nalam, M.N., Lin, H., Qu, H., Cornish, V.W., et al., Programming peptidomimetic syntheses by translating genetic codes designed de novo, Proc. Natl. Acad. Sci. U. S. A., 2003, vol. 100, no. 11, pp. 6353–6357. https://doi.org/10.1073/pnas.1132122100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O’Donoghue, P., Ling, J., Wang, Y.-S., and Söll, D., Upgrading protein synthesis for synthetic biology, Nat. Chem. Biol., 2013, vol. 9, no. 10, pp. 594–598. https://doi.org/10.1038/nchembio.1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Farzadfard, F., Gharaei, N., Higashikuni, Y., Jung, G., Cao, J., and Lu, T.K., Single-nucleotide-resolution computing and memory in living cells, Mol. Cell, 2019, vol. 75, no. 4, pp. 769–780. https://doi.org/10.1016/j.molcel.2019.07.011

  33. Amiram, M., Haimovich, A.D., Fan, C., Wang, Y.S., Aerni, H.R., Ntai, I., et al., Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids, Nat. Biotechnol., 2015, vol. 33, no. 12, pp. 1272–1279. https://doi.org/10.1038/nbt.3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park, S.-H., Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms, Science, 2003, vol. 299, no. 5609, pp. 1061–1064. https://doi.org/10.1126/science.1076979

    Article  CAS  PubMed  Google Scholar 

  35. Ryu, J. and Park, S.-H., Simple synthetic protein scaffolds can create adjustable artificial MAPK circuits in yeast and mammalian cells, Sci. Signaling, 2015, vol. 8, no. 383, p. ra66. https://doi.org/10.1126/scisignal.aab3397

    Article  CAS  Google Scholar 

  36. Truong, D.J., Kühner, K., Kühn, R., Werfel, S., Engelhardt, S., Wurst, W., et al., Development of an intein-mediated split – Cas9 system for gene therapy, Nucleic Acids Res., 2015, vol. 43, no. 13, pp. 6450–6458. https://doi.org/10.1093/nar/gkv601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kanno, A., Ozawa, T., and Umezawa, Y., Bioluminescent imaging of MAPK function with intein-mediated reporter gene assay, in Methods in Molecular Biology, vol. 574: Bioluminescence, Rich, P.B. and Douillet, C., Eds., Humana Press, 2009, pp. 185–192. https://doi.org/10.1007/978-1-60327-321-3_15.

  38. Davis, K.M., Pattanayak, V., Thompson, D.B., Zuris, J.A., and Liu, D.R., Small molecule–triggered Cas9 protein with improved genome-editing specificity, Nat. Chem. Biol., 2015, vol. 11, no. 5, pp. 316–318. https://doi.org/10.1038/nchembio.1793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Callahan, B.P., Topilina, N.I., Stanger, M.J., Van Roey, P., and Belfort, M., Structure of catalytically competent intein caught in a redox trap with functional and evolutionary implications, Nat. Struct. Mol. Biol., 2011, vol. 18, no. 5, pp. 630–633. https://doi.org/10.1038/nsmb.2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lohmueller, J.J., Armel, T.Z., and Silver, P.A., A tunable zinc finger-based framework for Boolean logic computation in mammalian cells, Nucleic Acids Res., 2012, vol. 40, no. 11, pp. 5180–5187. https://doi.org/10.1093/nar/gks142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lienert, F., Torella, J.P., Chen, J.-H., Norsworthy, M., Richardson, R.R., and Silver, P.A., Two- and three-input TALE-based AND logic computation in embryonic stem cells, Nucleic Acids Res., 2013, vol. 41, no. 21, pp. 9967–9975. https://doi.org/10.1093/nar/gkt758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaerli, Y., Gili, M., and Isalan, M., A split intein T7 RNA polymerase for transcriptional AND-logic, Nucleic Acids Res., 2014, vol. 42, vol. 19, pp. 12322–12328. https://doi.org/10.1093/nar/gku884

  43. To, A.C., Chu, D.H., Wang, A.R., Li, F.C., Chiu, A.W., Gao, D.Y., et al., A comprehensive web tool for toehold switch design, Bioinformatics, 2018, vol. 34, no. 16, pp. 2862–2864. https://doi.org/10.1093/bioinformatics/bty216

    Article  CAS  PubMed  Google Scholar 

  44. Hall, R.A. and Macdonald, J., Synthetic biology provides a toehold in the fight against Zika, Cell Host Microbe, 2016, vol. 19, no. 6, pp. 752–754. https://doi.org/10.1016/j.chom.2016.05.020

    Article  CAS  PubMed  Google Scholar 

  45. Takahashi, M.K., Tan, X., Dy, A.J., Braff, D., Akana, R.T., Furuta, Y., et al., A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers, Nat. Commun., 2018, vol. 9, no. 1, p. 3347. https://doi.org/10.1038/s41467-018-05864-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Steidler, L., Treatment of murine colitis by Lactococcus lactis secreting interleukin-10, Science, 2000, vol. 289, no. 5483, pp. 1352–1355. https://doi.org/10.1126/science.289.5483.1352

    Article  CAS  PubMed  Google Scholar 

  47. Vandenbroucke, K., de Haard, H., Beirnaert, E., Dreier, T., Lauwereys, M., Huyck, L., et al., Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis, Mucosal Immunol., 2010, vol. 3, no. 1, pp. 49–56. https://doi.org/10.1038/mi.2009.116

    Article  CAS  PubMed  Google Scholar 

  48. Xiang, S., Fruehauf, J., and Li, C.J., Short hairpin RNA-expressing bacteria elicit RNA interference in mammals, Nat. Biotechnol., 2006, vol. 24, no. 6, pp. 697–702. https://doi.org/10.1038/nbt1211

    Article  CAS  PubMed  Google Scholar 

  49. Piñero-Lambea, C., Bodelón, G., Fernández-Periañez, R., Cuesta, A.M., Álvarez-Vallina, L., and Fernández, L.Á., Programming controlled adhesion of E. coli  to target surfaces, cells, and tumors with synthetic adhesins, ACS Synth. Biol., 2015, vol. 4, no. 4, pp. 463–473. https://doi.org/10.1021/sb500252a

    Article  CAS  PubMed  Google Scholar 

  50. Duan, F.F., Liu, J.H., and March, J.C., Engineered commensal bacteria reprogram intestinal cells into glucose-responsive insulin-secreting cells for the treatment of diabetes, Diabetes, 2015, vol. 64, no. 5, pp. 1794–1803. https://doi.org/10.2337/db14-0635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lagenaur, L.A., Sanders-Beer, B.E., Brichacek, B., Pal, R., Liu, X., Liu, Y., et al., Prevention of vaginal SHIV transmission in macaques by a live recombinant Lactobacillus, Mucosal Immunol., 2011, vol. 4, no. 6, pp. 648–657. https://doi.org/10.1038/mi.2011.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lim, W.A. and June, C.H., The principles of engineering immune cells to treat cancer, Cell, 2017, vol. 168, no. 4, pp. 724–740. https://doi.org/10.1016/j.cell.2017.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Roybal, K.T., Williams, J.Z., Morsut, L., Rupp, L.J., Kolinko, I., Choe, J.H., et al., Engineering T cells with customized therapeutic response programs using synthetic notch receptors, Cell, 2016, vol. 167, no. 2, pp. 419–432.e16. https://doi.org/10.1016/j.cell.2016.09.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ausländer, D., Ausländer, S., Charpin-El Hamri, G., Sedlmayer, F., Müller, M., Frey, O., et al., A Synthetic multifunctional mammalian pH sensor and CO2 transgene-control device, Mol. Cell, 2014, vol. 55, no. 3, pp. 397–408. https://doi.org/10.1016/j.molcel.2014.06.007

    Article  CAS  PubMed  Google Scholar 

  55. Ye, H., Baba, M.D.-E., Peng, R.-W., and Fussenegger, M., A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice, Science, 2011, vol. 332, no. 6037, pp. 1565–1568. https://doi.org/10.1126/science.1203535

    Article  CAS  PubMed  Google Scholar 

  56. Roössger, K., Charpin-El-Hamri, G., and Fussenegger, M., A closed-loop synthetic gene circuit for the treatment of diet-induced obesity in mice, Nat. Commun., 2013, vol. 4, no. 1, p. 2825. https://doi.org/10.1038/ncomms3825

    Article  CAS  Google Scholar 

  57. Kotas, M.E. and Medzhitov, R., Homeostasis, inflammation, and disease susceptibility, Cell, 2015, vol. 160, no. 5, pp. 816–827. https://doi.org/10.1016/j.cell.2015.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xie, M., Ye, H., Wang, H., Charpin-El Hamri, G., Lormeau, C., Saxena, P., et al., β-cell-mimetic designer cells provide closed-loop glycemic control, Science, 2016, vol. 354, no. 6317, pp. 1296–1301. https://doi.org/10.1126/science.aaf4006

    Article  CAS  PubMed  Google Scholar 

  59. Mimee, M., Nadeau, P., Hayward, A., Carim, S., Flanagan, S., Jerger, L., et al., An ingestible bacterial-electronic system to monitor gastrointestinal health, Science, 2018, vol. 360, no. 6391, pp. 915–918. https://doi.org/10.1126/science.aas9315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Purcell, O. and Lu, T.K., Synthetic analog and digital circuits for cellular computation and memory, Curr. Opin. Biotechnol., 2014, vol. 29, pp. 146–155. https://doi.org/10.1016/j.copbio.2014.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hirai, H., Tani, T., and Kikyo, N., Structure and functions of powerful transactivators: VP16, MyoD and FoxA, Int. J. Dev. Biol., 2010, vol. 54, nos. 11–12, pp. 1589–1596. https://doi.org/10.1387/ijdb.103194hh

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saxena, P., Bojar, D., Zulewski, H., and Fussenegger, M., Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network, J. Biotechnol., 2017, vol. 259, pp. 39–45. https://doi.org/10.1016/j.jbiotec.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  63. Prindle, A., Samayoa, P., Razinkov, I., Danino, T., Tsimring, L.S., and Hasty, J., A sensing array of radically coupled genetic ‘biopixels’, Nature, 2012, vol. 481, no. 7379, pp. 39–44. https://doi.org/10.1038/nature10722

    Article  CAS  Google Scholar 

  64. Lee, W., Wood, T.K., and Chen, W., Engineering TCE-degrading rhizobacteria for heavy metal accumulation and enhanced TCE degradation, Biotechnol. Bioeng., 2006, vol. 95, no. 3, pp. 399–403. https://doi.org/10.1002/bit.20950

    Article  CAS  PubMed  Google Scholar 

  65. Jagadevan, S., Banerjee, A., Banerjee, C., Guria, C., Tiwari, R., Baweja, M., et al., Recent developments in synthetic biology and metabolic engineering in microalgae towards biofuel production, Biotechnol. Biofuels, 2018, vol. 11, no. 1, p. 185. https://doi.org/10.1186/s13068-018-1181-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Balaban, P.M., Vorontsov, D.D., Dyakonova, V.E., Dyakonova, T.L., Zakharov, I.S., Korshunova, T.A., et al., The central pattern generators, Zh. Vyssh. Nervn. Deyat. im. I. P. Pavlova, 2013, vol. 63, no. 5, pp. 520–541. https://doi.org/10.7868/S0044467713050031

    Article  CAS  Google Scholar 

  67. Lu, J., Yang, J., Kim, Y.-B., and Ayers, J., Low power, high PVT variation tolerant central pattern generator design for a bio-hybrid micro robot, Proc. 2012 IEEE 55th Int. Midwest Symposium on Circuits and Systems (MWSCAS), Boise, ID, IEEE, 2012, pp. 782–785. https://doi.org/10.1109/MWSCAS.2012.6292137.

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 18-29-07046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Patrushev.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Panyushkina

ADDITIONAL INFORMATION

Vasilev R.A., https://orcid.org/0000-0002-6839-905X; e-mail: ruavasilev@gmail.com

Chernikovich V.Yu., e-mail: victoria.artistcat@gmail.com

Evteeva M.A., e-mail: evteeva_ma@rrcki.ru

Sakharov D.A., https://orcid.org/0000-0001-9333-586X; e-mail: sakharov@muctr.ru

Patrushev M.V., https://orcid.org/0000-0002-4748-9283; e-mail: maxpatrushev@yandex.ru

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilev, R.A., Chernikovich, V.Y., Evteeva, M.A. et al. Synthetic Biology: Current State and Applications. Mol. Genet. Microbiol. Virol. 36, 15–26 (2021). https://doi.org/10.3103/S0891416821010079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0891416821010079

Navigation