Skip to main content
Log in

One can’t hear orientability of surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

The main result of this paper is that one cannot hear orientability of a surface with boundary. More precisely, we construct two isospectral flat surfaces with boundary with the same Neumann spectrum, one orientable, the other non-orientable. For this purpose, we apply Sunada’s and Buser’s methods in the framework of orbifolds. Choosing a symmetric tile in our construction, and adapting a folklore argument of Fefferman, we also show that the surfaces have different Dirichlet spectra. These results were announced in the C. R. Acad. Sci. Paris Sér. I Math., volume 320 in 1995, but the full proofs so far have only circulated in preprint form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology. Cambridge Tracts in Mathematics 171. Cambridge University Press, Cambridge (2007)

  2. Bérard, P.: Spectral geometry: direct and inverse problems. Lecture Notes in Mathematics, vol. 1207. Springer, Berlin (1986)

  3. Bérard, P.: Transplantation et isospectralité I. Math. Ann. 292, 547–559 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bérard, P.: Domaines plans isospectraux à la Gordon-Webb-Wolpert: une preuve élémentaire. Afrika Matematika 3(1), 135–146 (1992). Also Séminaire de Théorie Spectrale et Géométrie, Univ. Grenoble I, Saint-Martin-d’Hères 10 (1991–1992), 131–142

    MATH  Google Scholar 

  5. Bérard, P., Pesce, H.: Construction de variétés isospectrales autour du théorème de T. Sunada. (French) [Construction of isospectral manifolds using the theorem of T. Sunada] Progress in inverse spectral geometry, 63–83, Trends Math., Birkhäuser, Basel (1997)

  6. Bérard, P., Webb, D.: On ne peut pas entendre l’orientabilité d’une surface. C. R. Acad. Sci. Paris Sér. I Math. 320(5), 533–536 (1995)

    MathSciNet  MATH  Google Scholar 

  7. Bérard, P., Webb, D.: One can’t hear orientability of surfaces. MSRI Preprint No. 005-95, 24 p (1995)

  8. Brooks, R.: The Sunada Method. Tel Aviv Topology Conference: Rothenberg Festschrift (1998), 25–35, Contemp. Math. 231, Amer. Math. Soc., Providence, RI (1999)

  9. Brooks, R.: Constructing isospectral manifolds. Am. Math. Monthly 95(9), 823–839 (1988)

    Article  MathSciNet  Google Scholar 

  10. Buser, P.: Cayley graphs and isospectral domains. In: Proc. Taniguchi Symp. Geometry and Analysis on Manifolds, Sunada, T. (ed.) 1987. Lecture Notes in Mathematics, vol. 1339, 64–77. Springer, Berlin (1988)

  11. Buser, P.: Isospectral Riemann surfaces. Ann. Inst. Fourier 36(2), 167–192 (1986)

    Article  MathSciNet  Google Scholar 

  12. Buser, P., Conway, J., Doyle, P., Semmler, K.-D.: Some planar isospectral domains. Internat. Math. Res. Notices, no. 9, 391ff., approx. 9 pp (1994)

  13. Buser, P.: Geometry and Spectra of Riemann Surfaces. Birkhaüser, Boston (1992)

    MATH  Google Scholar 

  14. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, London (1984)

    MATH  Google Scholar 

  15. Curtis, C., Reiner, I.: Methods of Representation Theory with Applications to Finite Groups and orders, vol. I. Wiley, New York (1981)

    MATH  Google Scholar 

  16. DeMeyer, F., Ingraham, E.: Separable algebras over commutative rings. Lecture Notes in Mathematics, vol. 181. Springer, Berlin (1971)

  17. Doyle, P., Rossetti, J.P.: Isospectral hyperbolic surfaces have matching geodesics. N. Y. J. Math. 14, 193–204 (2008)

    MathSciNet  MATH  Google Scholar 

  18. Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  19. Gassmann, F.: Bemerkung zu der vorstehenden Arbeit von Hurwitz. Math. Z. 25, 124–143 (1926)

    Google Scholar 

  20. Gerst, I.: On the theory on \(n\)-th power residues and a conjecture of Kronecker. Acta Arithm. 17, 121–139 (1970)

    Article  MathSciNet  Google Scholar 

  21. Gordon, C.: Sunada’s isospectrality technique: two decades later. Spectral analysis in geometry and number theory, 45–58, Contemp. Math., 484, Amer. Math. Soc., Providence, RI (2009)

  22. Guralnick, R.: Subgroups inducing the same permutation representation. J. Algebra 81, 312–319 (1983)

    Article  MathSciNet  Google Scholar 

  23. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110, 1–22 (1992)

    Article  MathSciNet  Google Scholar 

  24. Herbrich, P.: On inaudible properties of broken drums—Isospectrality with mixed Dirichlet-Neumann boundary conditions. arXiv:1111.6789v3

  25. Hubbard, J.: Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, vol. 1. Matrix Editions, Ithaca, New York (2006)

    MATH  Google Scholar 

  26. James, G., Liebeck, M.: Representations and Characters of Groups. Cambridge University Press, Cambridge (1993)

  27. Kac, M.: Can one hear the shape of a drum? Am. Math. Monthly 73, 1–23 (1966)

    Article  MathSciNet  Google Scholar 

  28. Lenstra, H.: Grothendieck groups of abelian group rings. J. Pure Appl. Algebra 20, 173–193 (1981)

    Article  MathSciNet  Google Scholar 

  29. Miatello, R., Podestá, R.: Spin structures and spectra of \(\mathbb{Z}_2^{;k}\)-manifolds. Math. Z. 247(2), 319–335 (2004)

    Article  MathSciNet  Google Scholar 

  30. Papadopoulos, A., Penner, R.: Hyperbolic metrics, measured foliations and pants decompositions for non-orientable surfaces. Asian J. Math. 20(1), 157–182 (2016)

    Article  MathSciNet  Google Scholar 

  31. Perlis, R.: On the equation \(\zeta _K(s) = \zeta _{K^{\prime }}(s)\). J. Number Theory 9, 342–360 (1977)

    Article  MathSciNet  Google Scholar 

  32. Richardson, S., Stanhope, E.: You can hear the local orientability of an orbifold. Differ.Geom. Appl. 68, 101577, 7 pp (2020)

    Article  MathSciNet  Google Scholar 

  33. Scott, P.: The geometries of 3-manifolds. Bull. Lond. Math. Soc. 15, 401–487 (1983)

    Article  MathSciNet  Google Scholar 

  34. Serre, J.-P.: Linear Representations of Finite Groups. Springer, Berlin (1977)

    Book  Google Scholar 

  35. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121, 248–277 (1985)

    Article  MathSciNet  Google Scholar 

  36. Thurston, W.: The geometry and topology of 3-manifolds. Mimeographed lecture notes. Princeton University, Princeton (1976–1979)

Download references

Acknowledgements

We wish to thank Carolyn Gordon for helpful discussions, Dorothee Schüth for carefully reading a preliminary version, and Peter Doyle for discussing aspects of this work. We are grateful to Bob Brooks for communicating Fefferman’s argument. The first author acknowledges the hospitality of IMPA, where some of this research was conducted. The second author is grateful to MSRI for its support and for its congenial atmosphere. Both [6, 7] acknowledged support from NSF grants DMS-9216650 and DMS 9022140, from CNRS (France), and from CNPq (Brazil). The authors wish to thank the referee for his comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bérard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bérard, P., Webb, D.L. One can’t hear orientability of surfaces. Math. Z. 300, 139–160 (2022). https://doi.org/10.1007/s00209-021-02758-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-021-02758-y

Keywords

Mathematics Subject Classification

Navigation