Skip to main content
Log in

Development and Implementation of an Experimental Machine to Study Woven Fabric Preforming Defects

  • Research paper
  • Published:
Experimental Techniques Aims and scope Submit manuscript

Abstract

In Liquid Composite Molding (LCM), a fabric can be formed by highly double curved punch geometries. During the forming step, various types of defects can appear and may have a significant influence on the mechanical properties of the final composite materials. Till now, these defects have not been fully studied and/or understood. The aim of this study was to understand the mechanisms leading to the forming of mesoscopic defects (buckles and sliding), as well as their effect on the behavior of composite materials. To achieve this goal, an experimental machine was designed and built. The machine generates different types of defects, with controlled and adjusted amplitudes (calibrated defects) in samples of a fabric. These samples were then used to manufacture composite samples with calibrated defects, by an LCM process, in order to test and compare them with composite samples without defects. Thanks to this machine, calibrated forming defects that simulate the defects of an LCM process were generated, and the experimental parameters corresponding to the appearance of these defects were defined for two types of fabrics based on glass and carbon fibers. This work provides insight into the forming mechanisms of the buckle and sliding defects that occur during an LCM process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Li M, Wang P, Boussu F, Soulat D (2020) A review on the mechanical performance of three-dimensional warp interlock woven fabrics as reinforcement in composites. J Ind Text. https://doi.org/10.1177/1528083719894389

  2. Allaoui S, Cellard C, Hivet G (2015) Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms. Compos Part Appl Sci Manuf 68:336–345. https://doi.org/10.1016/j.compositesa.2014.10.017

    Article  CAS  Google Scholar 

  3. Shanwan A, Allaoui S (2018) Different experimental ways to minimize the preforming defects of multi-layered interlock dry fabric. Int J Mater Form 12(1):69–78. https://doi.org/10.1007/s12289-018-1407-6

    Article  Google Scholar 

  4. Farboodmanesh S, Chen J, Tao Z, Mead J, Zhang H (2010) Base fabrics and their interaction in coated fabrics. In:Smith WC (eds) Smart Textile Coatings and Laminates. Woodhead Publishing Series in Textiles (2010), pp 42–94. https://doi.org/10.1533/9781845697785.1.42

  5. Alshahrani H, Mohan R, Hojjati M (2015) Experimental investigation of in-plane shear deformation of out-of-autoclave Prepreg. Int J Compos Mater 5(4):81–87 http://article.sapub.org/10.5923.j.cmaterials.20150504.03.html

    CAS  Google Scholar 

  6. Khan MA, Mabrouki T, Vidal-Sallé E, Boisse P (2010) Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. J Mater Process Technol 210(2):378–388. https://doi.org/10.1016/j.jmatprotec.2009.09.027

    Article  CAS  Google Scholar 

  7. Hivet G, Duong AV (2011) A contribution to the analysis of the intrinsic shear behavior of fabrics. J Compos Mater 45(6):695–716. https://doi.org/10.1177/0021998310382315

    Article  Google Scholar 

  8. Lomov SV, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full-field strain measurements in textile deformability studies. Compos Part Appl Sci Manuf 39(8):1232–1244. https://doi.org/10.1016/j.compositesa.2007.09.014

    Article  CAS  Google Scholar 

  9. Rothe S, Wendt E, Krzywinski S, Halász M, Bakonyi P, Tamás P, Bojtos A (2019) Investigation of shear-induced deformation of reinforcing textiles by optical measurement devices. Materials 12(7):1029. https://doi.org/10.3390/ma12071029

    Article  CAS  Google Scholar 

  10. Barbagallo G, Madeo A, Azehaf I, Giorgio I, Morestin F, Boisse P (2017) Bias extension test on an unbalanced woven composite reinforcement: experiments and modeling via a second-gradient continuum approach. J Compos Mater 51(2):153–170. https://doi.org/10.1177/0021998316643577

    Article  Google Scholar 

  11. Boisse P, Hamila N, Guzman-Maldonado E, Madeo A, Hivet G, Dell’Isola F (2017) The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review. Int J Mater Form 10(4):473–492. https://doi.org/10.1177/0021998316643577

    Article  Google Scholar 

  12. Cao J, Akkerman R, Boisse P, Chen J, Cheng HS, De Graaf EF, Gorczyca JL, Harrison P, Hivet G, Launay J, Lee W, Liu L, Lomov SV, Long A, DeLuycker E, Morestin F, Padvoiskis J, Peng XQ, Zhu B (2008) Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos Part Appl Sci Manuf 39(6):1037–1053. https://doi.org/10.1016/j.compositesa.2008.02.016

    Article  CAS  Google Scholar 

  13. Rashidi A, Milani AS (2018) Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders. Compos Part Appl Sci Manuf 105:300–309. https://doi.org/10.1016/j.compositesa.2017.11.023

    Article  CAS  Google Scholar 

  14. Nosrat Nezami F, Gereke T (May 2016) Cherif C (2016) analyses of interaction mechanisms during forming of multilayer carbon woven fabrics for composite applications. Compos Part Appl Sci Manuf 84:406–416. https://doi.org/10.1016/j.compositesa.2016.02.023

    Article  CAS  Google Scholar 

  15. Allaoui S, Hivet G, Soulat D, Wendling A, Ouagne P, Chatel S (2014) Experimental preforming of highly double curved shapes with a case corner using an interlock reinforcement. Int J Mater Form 7(2):155–165. https://doi.org/10.1007/s12289-012-1116-5

    Article  Google Scholar 

  16. Boisse P, Hamila N Madeo a (2016) modelling the development of defects during composite reinforcements and prepreg forming. Philos Trans R Soc A Math Phys Eng Sci 374(2071):20150269. https://doi.org/10.1098/rsta.2015.0269

  17. Zhao C, Yang B, Wang S, Ma C, Wang S, Bi F (2019) Three-dimensional numerical simulation of Meso-scale-void formation during the Mold-filling process of LCM. Appl Compos Mater 26(4):1121–1137. https://doi.org/10.1007/s10443-019-09770-w

    Article  CAS  Google Scholar 

  18. Cruanes C, Shanwan A, Méo S, Allaoui S, Deffarges MP, Lacroix F, Hivet G (2018) Effect of mesoscopic out-of-plane defect on the fatigue behavior of a GFRP. Mech Mater 117:214–224. https://doi.org/10.1016/j.mechmat.2017.11.008

    Article  Google Scholar 

  19. Kacimi B, Djebbar A, Allaoui S, Hivet G, Teklal F (2019) Effect of reinforcement shear and mesoscopic defects on the low velocity impact behavior of a GFRP. Int J Mater Form. https://doi.org/10.1007/s12289-019-01521-3

  20. Zhao C, Xiao J, Li Y, Chu Q, Xu T, Wang B (2017) An experimental study of the influence of in-plane Fiber waviness on unidirectional laminates tensile properties. Appl Compos Mater 24:1321–1337. https://doi.org/10.1007/s10443-017-9590-z

    Article  Google Scholar 

  21. Croft K, Lessard L, Pasini D, Hojjati M, Chen J, Yousefpour A (2011) Experimental study of the effect of automated fiber placement induced defects on performance of composite laminates. Compos Part Appl Sci Manuf 42(5):484–491. https://doi.org/10.1016/j.compositesa.2011.01.007

    Article  CAS  Google Scholar 

  22. Wu C, Gu Y, Luo L, Xu P, Wang S, Li M, Zhang Z (2018) Influences of in-plane and out-of-plane fiber waviness on mechanical properties of carbon fiber composite laminate. J Reinf Plast Compos 37(13):877–891. https://doi.org/10.1177/0731684418765981

    Article  CAS  Google Scholar 

  23. Lightfoot JS, Wisnom MR, Potter K (2013) Defects in woven preforms: formation mechanisms and the effects of laminate design and layup protocol. Compos Part Appl Sci Manuf 51:99–107. https://doi.org/10.1016/j.compositesa.2013.04.004

    Article  CAS  Google Scholar 

  24. Boisse P, Hamila N, Vidal-Sallé E, Dumont F (2011) Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 71(5):683–692. https://doi.org/10.1016/j.compscitech.2011.01.011

    Article  CAS  Google Scholar 

  25. Hosseini A, Kashani MH, Sassani F, Milani AS, Ko FK (2018) Identifying the distinct shear wrinkling behavior of woven composite preforms under bias extension and picture frame tests. Compos Struct 185:764–773. https://doi.org/10.1016/j.compstruct.2017.11.033

    Article  Google Scholar 

  26. Härtel F, Middendorf P (2013) Process parameters studies and comparison of different preform processes with NCF material, proceeding of ICCM-19, Montreal

  27. Mallach A, Härtel F, Heieck F, Fuhr JP, Middendorf P, Gude M (2017) Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement. J Compos Mater 51(16):2363–2375. https://doi.org/10.1177/0021998316670477

    Article  Google Scholar 

  28. Bel S, Hamila N, Boisse P, Dumont F (2012) Finite element model for NCF composite reinforcement preforming: importance of inter-ply sliding. Compos Part Appl Sci Manuf 43(12):2269–2277. https://doi.org/10.1016/j.compositesa.2012.08.005

    Article  CAS  Google Scholar 

  29. Labanieh AR, Garnier C, Ouagne P, Dalverny O, Soulat D (2018) Intra-ply yarn sliding defect in hemisphere preforming of a woven preform. Compos Part Appl Sci Manuf 107:432–446. https://doi.org/10.1016/j.compositesa.2018.01.018

    Article  CAS  Google Scholar 

  30. Gatouillat S, Bareggi A, Vidal-Sallé E, Boisse P (2013) Meso modelling for composite preform shaping – simulation of the loss of cohesion of the woven fibre network. Compos Part Appl Sci Manuf 54:135–144. https://doi.org/10.1016/j.compositesa.2013.07.010

    Article  CAS  Google Scholar 

  31. Capelle E, Ouagne P, Soulat D, Duriatti D (2014) Complex shape forming of flax woven fabrics: design of specific blank-holder shapes to prevent defects. Compos Part B Eng 62:29–36. https://doi.org/10.1016/j.compositesb.2014.02.007

    Article  CAS  Google Scholar 

  32. Tephany C, Gillibert J, Ouagne P, Hivet G, Allaoui S, Soulat D (2016) Development of an experimental bench to reproduce the tow buckling defect appearing during the complex shape forming of structural flax based woven composite reinforcements. Compos Part Appl Sci Manuf 81:22–33. https://doi.org/10.1016/j.compositesa.2015.10.011

    Article  CAS  Google Scholar 

  33. Salem MM, De Luycker E, Fazzini M, Ouagne P (2019) Experimental, analytical and numerical investigation to prevent the tow buckling defect during fabric forming. Compos Part Appl Sci Manuf 125:105567. https://doi.org/10.1016/j.compositesa.2019.105567

    Article  CAS  Google Scholar 

  34. Soulat D, Allaoui S, Chatel S (2009) Experimental device for the preforming step of the RTM process. Int J Mater Form 2(1):181. https://doi.org/10.1007/s12289-009-0568-8

    Article  Google Scholar 

  35. Allaoui S, Launay J, Soulat D, Chatel S (2008) Experimental tool of woven reinforcement forming. Int J Mater Form 1(1):815–818. https://doi.org/10.1007/s12289-008-0260-4

    Article  Google Scholar 

  36. Hivet G, Allaoui S, Cam BT, Ouagne P, Soulat D (2012) Design and potentiality of an apparatus for measuring yarn/yarn and fabric/fabric friction. Exp Mech 52(8):1123–1136. https://doi.org/10.1007/s11340-011-9566-0

    Article  Google Scholar 

  37. Wendling A, Hivet G, Vidal-Sallé E, Boisse P (2014) Consistent geometrical modelling of interlock fabrics. Finite Elem Anal Des 90:93–105. https://doi.org/10.1016/j.finel.2014.05.010

    Article  Google Scholar 

  38. Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behavior of woven composite reinforcements. Compos Sci Technol 68(2):506–515. https://doi.org/10.1016/j.compscitech.2007.06.021

    Article  Google Scholar 

  39. Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR (2012) Characterising the shear–tension coupling and wrinkling behaviour of woven engineering fabrics. Compos Part Appl Sci Manuf 43(6):903–914. https://doi.org/10.1016/j.compositesa.2012.01.024

    Article  CAS  Google Scholar 

  40. Zhou Y, Ali M, Gong X, Yang D (2017) An overview of yarn pull-out behavior of woven fabrics. Text Res J. https://doi.org/10.1177/0040517517741156

Download references

Acknowledgments

The authors would like to thank the Centre Val-de-Loire for financing this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Allaoui.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanwan, A., Allaoui, S., Gillibert, J. et al. Development and Implementation of an Experimental Machine to Study Woven Fabric Preforming Defects. Exp Tech 46, 299–316 (2022). https://doi.org/10.1007/s40799-021-00483-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40799-021-00483-z

Keywords

Navigation