Skip to main content
Log in

The Ostracods (Ostracoda, Crustacea) as a Model Object for the Studying of the Evolution of Sexual Dimorphism

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—

The ostracods are an ideal object for studies of microevolutionary process, in particular, the evolution of sexual dimorphism, since they have a long and continuous fossil record, clearly expressed morphological traits, the presence of sexual dimorphism, and numerous and clearly distinguished age stages. The paper reviews previous reports on the evolution of sexual dimorphism in ostracods and reports new data on this phenomenon. For some ostracods, males have been shown to be the first to be involved in evolutionary process from the Miocene to the present. The carapace hinge of the males differs from that in females due to pedomorphic reorganizations. This phenomenon has been identified for the first time in the Mesozoic (Late Callovian) species Lophocythere acrolophos (Mikhailovtsement section, Ryazan oblast), the juvenile features of which continue to retain in the hinge of male carapaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Abe, K., Population structure of Keljella bisanensis (Okubo) (Ostracoda, Crustacea)—An inquiry into how far the population structure will be preserved in the fossil record, J. Fac. Sci. Tokyo Univ., 1983, vol. 20, no. 5, pp. 443–488.

    Google Scholar 

  2. Abe, K. and Vannier, J., Mating behavior in the podocopid ostracode Bicornucythere bisanensis (Okubo, 1975): rotation of a female by a male with asymmetric fifth limbs, J. Crustacean Biol., 1991, vol. 11, no. 2, pp. 250–260.

    Article  Google Scholar 

  3. Alexander, C.I., Sexual dimorphism in fossil Ostracoda, Am. Midl. Nat., 1932, vol. 13, no. 5, pp. 302–311.

    Article  Google Scholar 

  4. Andreev, Yu.N., Sexual dimorphism of Cretaceous ostracods from the Gissar-Tajik region, in Iskopaemye ostrakody (Fossil Ostracods), Kiev: Naukova Dumka, 1966, pp. 50–66.

  5. Arenz, A.L., Tran, T., Koyama, K.H., Marin Gomez, A.M., and Rivera, A.S., Sexually dimorphic eye-loss driven by ecological selection in an ostracod crustacean: support for the reproductive role hypothesis, Integr. Comp. Biol., 2018, vol. 58, no. 3, pp. 431–440.

    Article  CAS  PubMed  Google Scholar 

  6. Armstrong, H. and Brasier, M., Microfossils, Chichester: Wiley, 2013, pp. 219–248.

    Google Scholar 

  7. Badyaev, A.V. and Martin, T.E., Sexual dimorphism in relation to current selection in the house finch, Evolution, 2000, vol. 54, pp. 987–997.

    CAS  PubMed  Google Scholar 

  8. Bateman, A.J., Intra-sexual selection in Drosophila, Heredity, 1948, vol. 2, pp. 349–368.

    Article  CAS  PubMed  Google Scholar 

  9. Bonaduce, G. and Danielopol, D.L., To see and not to be seen: the evolutionary problems of the Ostracoda Xestoleberididae, in Developments in Palaeontology and Stratigraphy, Amsterdam: Elsevier, 1988, vol. 11, pp. 375–398.

    Google Scholar 

  10. Cohen, A.C., Comparison of myodocopid ostracodes in two zones of the Belize barrier reef near Carrie Bow Cay with changes in distribution 1978–1981, Bull. Mar. Sci., 1989, vol. 45, pp. 316–337.

    Google Scholar 

  11. Cohen, A.C. and Morin, J.G., Patterns of reproduction in ostracodes: a review, J. Crustacean Biol., 1990, vol. 10, pp. 184–211.

    Article  Google Scholar 

  12. Darwin, Ch., On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 1st ed., London: John Murray, 1859, ch. 4.

    Book  Google Scholar 

  13. Darwin, Ch., The Descent of Man, and Selection in Relation to Sex, London: John Murray, 1871, vol. 2.

    Book  Google Scholar 

  14. Fisher, R.A., The Genetical Theory of Natural Selection, Oxford: Clarendon, 1930.

    Book  Google Scholar 

  15. Forel, M.B., Crasquin, S., Chitnarin, A., Angiolini, L., and Gaetani, M., Precocious sexual dimorphism and the Lilliput effect in Neo-Tethyan Ostracoda (Crustacea) through the Permian–Triassic boundary, Palaeontology, 2015, vol. 58, no. 3, pp. 409–454.

    Article  Google Scholar 

  16. Fraiser, M.L. and Bottjer, D.J., Elevated atmospheric CO2 and the delayed biotic recovery from the End-Permian extinction, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 252, pp. 164–175.

    Article  Google Scholar 

  17. Futuyma, D.J., Evolution, Sunderland, MA: W.B. Sinauer, 2005.

    Google Scholar 

  18. Geodakyan, V.A., The role of genders in the transmission and transformation of genetic information, Probl. Peredachi Inf., 1965, vol. 1, no. 1, pp. 105–112.

    Google Scholar 

  19. Geodakyan, V.A., Differential mortality and the normal rate of reaction of males and females, Zh. Obshch. Biol., 1974, vol. 35, no. 3, pp. 376–385.

    Google Scholar 

  20. Hamilton, W.D., Extraordinary sex ratios, Science, 1967, vol. 156, no. 3774, pp. 477–488.

    Article  CAS  PubMed  Google Scholar 

  21. Harvey, T.H., Vélez, M.I., and Butterfield, N.J., Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation, Proc. Natl. Acad. Sci. U.S.A., 2012, vol. 109, no. 5, pp. 1589–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayami, I., Ecology of mass extinctions: the diversity and shell size of bivalves through time, Fossils, 1998, vol. 52, pp. 38–44.

    Google Scholar 

  23. Henningsmoen, G., On certain features of palaeocope ostracodes, Geol. Foeren. Stockholm Foerh., 1965, vol. 86, no. 4, pp. 329–394.

    Article  Google Scholar 

  24. Horne D.J., Danielopol D.L., and Martens K., Reproductive behavior, in Sex and Parthenogenesis, Martens, K., Ed., Leiden: Backhuys, 1998, pp. 157–196.

    Google Scholar 

  25. Horne, D.J., Cohen, A., and Martens, K., Taxonomy, morphology and biology of Quaternary and living Ostracoda, in The Ostracoda: Applications in Quaternary Research, Washington, DC: Am. Geophys. Union, 2002, vol. 131, pp. 5–36.

    Google Scholar 

  26. Howe, H.V., Kesling, R.V., and Scott, H.W., Morphology of living Ostracoda, in Treatise on Invertebrate Paleontology, Part Q: Arthropoda 3—Crustacea/Ostracoda, Lawrence, KS: Univ. of Kansas Press, 1961, pp. 3–19.

  27. Ivanova, V.A., New Middle Ordovician genus of ostracodes, Paleontol. Zh., 1971, vol. 1, pp. 62–66.

    Google Scholar 

  28. Ivanova, V.A., Ostrakody rannego i srednego ordovika. Pod-otryad Hollinomorpha (Ostracodes of the Early and Middle Ordovician. Suborder Hollinomorpha), Moscow: Nauka, 1979.

  29. Jaanusson, V., Functional morphology of the shell in platycope ostracodes—a study of arrested evolution, Lethaia, 1985, vol. 18, no. 1, pp. 73–84.

    Article  Google Scholar 

  30. Jones, A.G. and Avise, J.C., Mating systems and sexual selection in male-pregnant pipefishes and seahorses: insights from microsatellite-based studies of maternity, J. Hered., 2001, vol. 92, no. 2, pp. 150–158.

    Article  CAS  PubMed  Google Scholar 

  31. Kamiya, T., Different sex-ratios in two recent species of Loxoconcha (Ostracoda), Senckenbergiana Lethaea, 1988, vol. 68, pp. 337–345.

    Google Scholar 

  32. Karanovic, I., Recent Freshwater Ostracods of the World: Crustacea, Ostracoda, Podocopida, New York: Springer-Verlag, 2012.

    Book  Google Scholar 

  33. Knell, R.J., Naish, D., Tomkins, J.L., and Hone, D.W., Sexual selection in prehistoric animals: detection and implications, Trends Ecol. Evol., 2013, vol. 28, no. 1, pp. 38–47.

    Article  PubMed  Google Scholar 

  34. Leighton, L.R. and Schneider, C.L., Taxon characteristics that promote survivorship through the Permian–Triassic interval: transition from the Paleozoic to the Mesozoic brachiopod fauna, Paleobiology, 2008, vol. 34, pp. 65–79.

    Article  Google Scholar 

  35. Lyubimova, P.S., Ostracodes of the Mesozoic deposits of the Middle Volga region and Obshchii Syrt, Tr. Vses. Neft. Nauchno-Issled. Geologorazved. Inst., 1955, vol. 84, pp. 3–190.

    Google Scholar 

  36. Malz, H., Die Gattung Macrodentina und Einige Andere Ostracoden-Arten aus dem Oberen Jura von NW-Deutschland, England und Frankreich, Abh. Senckenb. Naturforsch. Ges. vol. 497, Senckenberg: Naturforsch. Ges., 1958, pp. 1–67.

  37. Markov, A.V. and Naimark, E.B., Selective extinction of specific taxa and its role in biota evolution, Zh. Obshch. Biol., 1994, vol. 55, no. 6, pp. 673–683.

    Google Scholar 

  38. Martins, M.J.F., Adult sex-ratio in ostracods and its implications for sexual selection, Invertebr. Reprod. Dev., 2019, vol. 63, no. 3, pp. 1–11.

    CAS  Google Scholar 

  39. Martins, M.J.F., Hunt, G., Lockwood, R., Swaddle, J.P., and Horne, D.J., Correlation between investment in sexual traits and valve sexual dimorphism in Cyprideis species (Ostracoda), PLoS One, 2017, vol. 12, no. 7, pp. 1–19.

    Google Scholar 

  40. Martins, M.J.F., Puckett, T.M., Lockwood, R., Swaddle, J.P., and Hunt, G., High male sexual investment as a driver of extinction in fossil ostracods, Nature, 2018, vol. 556, pp. 366–369.

    Article  CAS  PubMed  Google Scholar 

  41. Matzke-Karasz, R., Smith, R.J., Symonova, R., Miller, C.G., and Tafforeau, P., Sexual intercourse involving giant sperm in Cretaceous ostracod, Science, 2009, vol. 324, no. 5934, p. 1535.

    Article  CAS  PubMed  Google Scholar 

  42. Matzke-Karasz, R., Neil, J.V., Smith, R.J., Symonová, R., Mořkovský, L., et al., Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia, Proc. R. Soc. B, 2014, vol. 281, no. 1786, pp. 1–9.

  43. McGregor, D.L. and Kesling, R.V., Copulatory Adaptations in Ostracods, Part 2: Adaptations in Living Ostracods, Contrib. Mus. Paleontol. Univ. Mich. vol. 22, Ann Arbor: Univ. Michigan, 1969, pp. 221–239.

  44. McNamara, K.J., Heterochrony: the evolution of development, Evol. Educ. Outreach, 2012, vol. 5, no. 2, pp. 203–218.

    Article  Google Scholar 

  45. Melnikova, L.M., Siveter, D.J., and Williams, M., Cambrian Bradoriida and Phosphatocopida (Arthropoda) of the Former Soviet Union, J. Micropalaeontol., 1997, vol. 16, no. 2, pp. 179–191.

    Article  Google Scholar 

  46. Miller, G.T. and Pitnick, S., Sperm-female coevolution in Drosophila, Science, 2002, vol. 298, no. 5596, pp. 1230–1233.

    Article  CAS  PubMed  Google Scholar 

  47. Moore, R.C., Treatise on Invertebrate Paleontology, Part Q: Arthropoda 3—Crustacea/Ostracoda, Lawrence, KS: Univ. of Kansas Press, 1961.

  48. Morin, J.G. and Cohen, A.C., It’s all about sex: bioluminescent courtship displays, morphological variation and sexual selection in two new genera of Caribbean ostracodes, J. Crustacean Biol., 2010, vol. 30, no. 1, pp. 56–67.

    Article  Google Scholar 

  49. Neale, J.W. and Kilenyi, T.I., New species of Mandelstamia (Ostracoda) from the English Mesozoic, Palaeontology, 1961, vol. 3, pp. 439–449.

    Google Scholar 

  50. Nikolaeva, I.A. and Aladin, N.V., General characteristics of the Cenozoic ostracods, in Prakticheskoe rukovodstvo po mikrofaune SSSR. Tom 3. Ostrakody kainozoya (Practical Guide on Microfauna of USSR, Vol. 3: Cainozoic Ostracods), St. Petersburg: Nedra, 1989, pp. 7–26.

  51. Nowak, H., Harvey, T.H., Liu, H.P., McKay, R.M., and Servais, T., Exceptionally preserved arthropodan microfossils from the Middle Ordovician Winneshiek Lagerstätte, Iowa, USA, Lethaia, 2018, vol. 51, no. 2, pp. 267–276.

    Article  Google Scholar 

  52. Okubo, I., Five species of Callistocythere (Ostracoda) from the Inland Sea of Seto, Res. Crustacea, 1979, vol. 9, pp. 13–25.

    Article  Google Scholar 

  53. Ozawa, H., The history of sexual dimorphism in Ostracoda (Arthropoda, Crustacea) since the Paleozoic, in Sexual Dimorphism, Rijeka: InTech, 2013, pp. 51–80.

    Google Scholar 

  54. Pokorný, V., Ostracodes, in Introduction to Marine Micropaleontology, New York: Elsevier, 1998, pp. 109–149.

    Google Scholar 

  55. Polilov, A.A., At the Size Limit—Effects of Miniaturization in Insects, Cham: Springer-Verlag, 2016.

    Book  Google Scholar 

  56. Prakticheskoe rukovodstvo po mikrofaune SSSR. Tom 4. Ostrakody paleozoya (Practical Guide on Microfauna of USSR, Vol. 4: Paleozoic Ostracods), Leningrad: Nedra, 1990.

  57. Rivera, A.S. and Oakley, T.H., Ontogeny of sexual dimorphism via tissue duplication in an ostracod (Crustacean), Evol. Dev., 2009, vol. 11, no. 2, pp. 233–243.

    Article  PubMed  Google Scholar 

  58. Rivers, T.J. and Morin, J.G., Complex sexual courtship displays by luminescent male marine ostracods, J. Exp. Biol., 2008, vol. 211, pp. 2252–2262.

    Article  PubMed  Google Scholar 

  59. Sarv, L.I., Sexual dimorphism in ancient Paleozoic ostracods, in Iskopaemye ostrakody (Fossil Ostracods), Kiev: Naukova Dumka, 1966, pp. 14–21.

  60. Schornikov, E.I. and Tsareva, O.A., Heterochrony in shell sculpture development within the ostracode genus Hemicythere, Russ. J. Mar. Biol., 2002, vol. 28, no. 1, pp. 7–18.

    Article  Google Scholar 

  61. Scott, H.W., Wainwright, J., and Moore, R.C., Dimorphism of Ostracoda, in Treatise on Invertebrate Paleontology, Part Q: Arthropoda 3—Crustacea/Ostracoda, Lawrence, KS: Univ. of Kansas Press, 1961, pp. 37–43.

  62. Shaw, R.F. and Mohler, J.D., The selective significance of the sex ratio, Am. Nat., 1953, vol. 87, no. 837, pp. 337–342.

    Article  Google Scholar 

  63. Schornikov, E.I., The sexual dimorphism and variation in members of the genus Leptocythere, in Iskopaemye ostrakody (Fossil Ostracods), Kiev: Naukova Dumka, 1966, pp. 73–79.

  64. Schornikov, E.I., A new Paratethyan genus of the ostracod subfamily Loxoconchinae (Podocopida, Cytheroidea), Paleontol. J., 2016, vol. 50, no. 6, pp. 601–608.

    Article  Google Scholar 

  65. Schornikov, E.I., Taxonomic remarks concerning ostracods of the Ponto–Caspian Basin, Paleontol. J., 2017, vol. 51, no. 5, pp. 510–519.

    Article  Google Scholar 

  66. Shurupova, Ya.A. and Tesakova, E.M., Species interrelatedness in the genus Lophocythere Silvester-Bradley, 1948 (Ostracoda) in the Late Callovian of the Russian Plate, Paleontol. J., 2019, vol. 53, no. 9, pp. 54–59.

    Article  Google Scholar 

  67. Siveter, D.J., Sutton, M.D., Briggs, D.E., and Siveter, D.J., An ostracode crustacean with soft parts from the Lower Silurian, Science, 2003, vol. 302, no. 5651, pp. 1749–1751.

    Article  CAS  PubMed  Google Scholar 

  68. Siveter, D.J., Tanaka, G., Farrell, U.C., Martin, M.J., Siveter, D.J., and Briggs, D.E., Exceptionally preserved 450-million-year-old Ordovician ostracods with brood care, Curr. Biol., 2014, vol. 24, no. 7, pp. 801–806.

    Article  CAS  PubMed  Google Scholar 

  69. Song, H.J., Tong, J., Chen, Z.Q., Yang, H., and Wang, Y.B., End-Permian mass extinction of foraminifers in the Nanpanjiang Basin, South China, J. Paleontol., 2011, vol. 83, pp. 718–738.

    Article  Google Scholar 

  70. Speiser, D.I., Lampe, R.I., Lovdahl, V.R., Carrillo-Zazueta, B., Rivera, A.S., and Oakley, T.H., Evasion of predators contributes to the maintenance of male eyes in sexually dimorphic Euphilomedes ostracods (Crustacea), Integr. Comp. Biol., 2013, vol. 53, pp. 78–88.

    Article  PubMed  Google Scholar 

  71. Tesakova, E.M., Ostracods of the genus Palaeocytheridea Mandelstam in the Middle and Upper Jurassic of Europe: 1. Development of ideas on the content of the genus and the results of its revision, Paleontol. J., 2013a, vol. 47, no. 3, pp. 256–271.

    Article  Google Scholar 

  72. Tesakova, E.M., Ostracods of the genus Palaeocytheridea Mandelstam in the Middle and Upper Jurassic of Europe: 2. Description of taxa, Paleontol. J., 2013b, vol. 47, no. 5, pp. 485–494.

    Article  Google Scholar 

  73. Tsukagoshi, A., Natural history of the brackish-water ostracode genus Ishizakiella from East Asia: evidence for heterochrony, J. Crustacean Biol., 1994, vol. 14, pp. 295–313.

    Article  Google Scholar 

  74. Tsukagoshi, A., Geobiological history perused by researches for Ostracoda, in Diversity of Organisms, Organism Science in the 21th Century, Series 2, Katakura, H. and Mawatari, S., Eds., Tokyo: Baifukan, 2007, ch. 2, pp. 37–70.

    Google Scholar 

  75. Tsukagoshi, A. and Kamiya, T., Heterochrony of the ostracod hingement and its significance for taxonomy, Biol. J. Linn. Soc., 1996, vol. 57, pp. 343–370.

    Article  Google Scholar 

  76. Vannier, J., Williams, M., Alvaro, J.J., Viscaïno, D., Monceret, S., and Monceret, E., New Early Cambrian bivalved arthropods from southern France, Geol. Mag., 2005, vol. 142, pp. 751–763.

    Article  Google Scholar 

  77. Whatley, R.C. and Stephens, J.M., Precocious sexual dimorphism in fossil and recent Ostracoda, in Aspects of Ecology and Zoogeography of Recent and Fossil Ostracoda, Dordrecht: Springer-Verlag, 1977, pp. 69–91.

    Google Scholar 

  78. Wilkinson, I.P., Kolpenskaya, N.N., and Whatley, R.C., The temporal and spatial distribution of Mandelstamia, with particular emphasis on the Kimmeridgian and Volgian, Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 1998, vol. 20, pp. 329–345.

    Google Scholar 

  79. Williams, M., Siveter, D.J., Popov, L.E., and Vannier, J.M.C., Biogeography and affinities of the bradoriid arthropods: cosmopolitan microbenthos of the Cambrian seas, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2007, vol. 248, pp. 202–232.

    Article  Google Scholar 

  80. Wischer, C.A., Die Gattung Gomphocythere in Nordwesdeutschland und das Problem der brackischen Ostracoden, Micropaleontology, 1957, vol. 3, no. 3, pp. 269–275.

    Article  Google Scholar 

  81. Yamaguchi, T., Honda, R., Matsui, H., and Nishi, H., Sexual shape dimorphism and selection pressure on males in fossil ostracodes, Paleobiology, 2017, vol. 43, no. 3, pp. 407–424.

    Article  Google Scholar 

  82. Yang, Z.Y., Wu, S.B., Yin, H.F., Xu, G.R., Zhang, K.X., and Bi, X.M., Permo-Triassic Events of South China, Beijing: Geol. Publ. House, 1993.

    Google Scholar 

  83. Zanina, I.E., Netskaya, A.I., and Polenova, E.N., Superfamily Beyrichiacea, in Osnovy paleontologii. Tom 8. Chlenistonogie—trilobitoobraznye i rakoobraznye (Fundamentals of Paleontology, Vol. 8: Arthropods—Trilobitomorpha and Crustaceans), Moscow: Akad. Nauk SSSR, 1960, pp. 300–314.

Download references

ACKNOWLEDGMENTS

We are grateful to L.M. Mel’nikova (Paleontological Institute, Russian Academy of Sciences) and A.Yu. Zhuravlev (Moscow State University) for their participation in the discussion of the results, helpful remarks, and comprehensive support.

Funding

This work was carried out as a part of topic of the state assignments АААА-А16-116021660031-5 and АААА-А16-116033010096-8 (Moscow State University), 0135-2018-0036 (Geological Institute, Russian Academy of Sciences) and was partially supported by the Russian Foundation for Basic Research, project no. 18-05-00501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. A. Shurupova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement on animal welfare. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurupova, Y.A., Tesakova, E.M. The Ostracods (Ostracoda, Crustacea) as a Model Object for the Studying of the Evolution of Sexual Dimorphism. Biol Bull Rev 11, 226–236 (2021). https://doi.org/10.1134/S2079086421030105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421030105

Navigation