Skip to main content
Log in

Gnetum and Nymphaeaceans as Models for a Scenario of the Origin of Morphotype of Flowering Plants

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

Phylogenetic relationship among seed plants recently obtained with molecular genetics fails to reveal the evolutionary steps of the formation of the basic morphotype of flowering plants. This task can be solved via morphological functional modeling of the first steps of the formation of flowering plants based on appropriate morphotypes in extant flora, irrespective of their genetic kinship. For instance, Gnetales adhere phylogenetically to conifers, but the genus Gnetum is appreciated for its numerous features convergent with angiosperms and can be used as a model of the morphological state of the angiosperm ancestor. A morphological analysis of the available data shows that the true angiosperm ancestor must have differed from Gnetum in some important respects, e.g., it must have had a more primitive xylem and bisexual fructifications. Aquatic intermediate stage modeled by water lilies is needed as a “bridge” that connects this ancestral condition with a full-fledged flowering plant. This intermediate stage differed from the extant water lilies in some crucial respects, e.g., it retained a cambium and possessed small flowers. The appearance of perianth with corolla is supposed to be possible at this aquatic stage only because it is water-wasteful. The scenario employs the concept of a megasporangia-bearing shoot, which is an alternative to the more common concept of a megasporangia-bearing leaf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Arber, E.A.N. and Parkin, J., On the origin of angiosperms, J. Linn. Soc. Bot., 1907, vol. 38, no. 263, pp. 29–80.

    Article  Google Scholar 

  2. Bailey, I.W., The development of vessels in angiosperms and its significance in morphological research, Am. J. Bot., 1944, vol. 31, no. 7, pp. 421–428.

    Article  Google Scholar 

  3. Baskin, J.M. and Baskin, C.C., Pollen (microgametophyte) competition: an assessment of its significance in the evolution of flowering plant diversity, with particular reference to seed germination, Seed Sci. Res., 2015, vol. 25, no. 1, pp. 1–11.

    Article  Google Scholar 

  4. Bateman, R.M., Hunting the Snark: the flawed search for mythical Jurassic angiosperms, J. Exp. Bot., 2020, vol. 71, no. 1, pp. 22–35.

    Article  CAS  PubMed  Google Scholar 

  5. Beck, C.B., The appearance of gymnospermous structure, Biol. Rev., 1970, vol. 45, no. 3, pp. 379–400.

    Article  Google Scholar 

  6. Bierhorst, D.W., Vessels in Equisetum, Am. J. Bot., 1958, vol. 45, pp. 534–537.

    Article  Google Scholar 

  7. Bolinder, K., Humphreys, A.M., Ehrlén, J., Alexandersson, R., Ickert-Bond, S.M., and Rydin, C., From near extinction to diversification by means of a shift in pollination mechanism in the gymnosperm relict Ephedra (Ephedraceae, Gnetales), Bot. J. Linn. Soc., 2016, vol. 180, no. 4, pp. 461–477.

    Article  Google Scholar 

  8. Bowe, L.M., Coat, G., and de Pamphilis, C.W., Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 8, pp. 4092–4097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boyce, C.K., Brodribb, T.J., Feild, T.S., and Zwieniecki, M.A., Angiosperm leaf vein evolution was physiologically and environmentally transformative, Proc. R. Soc., B, 2009, vol. 276, no. 1663, pp. 1771–1776.

  10. Carlquist, S., Wood, bark, and stem anatomy of Gnetales: a summary, Int. J. Plant Sci., 1996, vol. 157, suppl. 6, pp. S58–S76.

    Article  Google Scholar 

  11. Carlquist, S., Xylem heterochrony: an unappreciated key to angiosperm origin and diversifications, Bot. J. Linn. Soc., 2009, vol. 161, no. 1, pp. 26–65.

    Article  Google Scholar 

  12. Carlquist, S., Wood anatomy of Gnetales in a functional, ecological, and evolutionary context, Aliso: J. Syst. Evol. Bot., 2012, vol. 30, no. 1, pp. 33–47.

    Article  Google Scholar 

  13. Carlquist, S. and Schneider, E.L., The tracheid–vessel element transition in angiosperms involves multiple independent features: cladistic consequences, Am. J. Bot., 2002, vol. 89, no. 2, pp. 185–195.

    Article  PubMed  Google Scholar 

  14. Carlquist, S. and Schneider, E.L., Equisetum xylem: SEM studies and their implications, Am. Fern J., 2011, vol. 101, no. 3, pp. 133–141.

    Article  Google Scholar 

  15. Chaw, S.M., Parkinson, C.L., Cheng, Y., Vincent, T.M., and Palmer, J.D., Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers, Proc. Natl. Acad. Sci. U.S.A., 2000, vol. 97, no. 8, pp. 4086–4091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, F., Liu, X., Yu, C., Chen, Y., Tang, H., and Zhang, L., Water lilies as emerging models for Darwin’s abominable mystery, Hortic. Res., 2017, vol. 4, p. 17051. https://doi.org/10.1038/hortres.2017.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coiro, M., Chomicki, G., and Doyle, J.A., Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales, Paleobiology, 2018, vol. 44, no. 3, pp. 490–510.

    Article  Google Scholar 

  18. Coiro, M., Doyle, J.A., and Hilton, J., How deep is the conflict between molecular and fossil evidence on the age of angiosperms? New Phytol., 2019, vol. 223, no. 1, pp. 83–99. https://doi.org/10.1111/nph.15708

    Article  PubMed  Google Scholar 

  19. Crepet, W.L., Advanced (constant) insect pollination mechanisms: Pattern of evolution and implications vis-à-vis angiosperm diversity, Ann. Mo. Bot. Gard., 1984, vol. 71, no. 2, pp. 607–630.

    Article  Google Scholar 

  20. Doyle, J.A., Origin of angiosperms, Annu. Rev. Ecol. Syst., 1978, vol. 9, no. 1, pp. 365–392.

    Article  Google Scholar 

  21. Doyle, J.A., Seed ferns and the origin of angiosperms, J. Torrey Bot. Soc., 2006, vol. 133, pp. 169–209.

    Article  Google Scholar 

  22. Doyle, J.A., Molecular and fossil evidence on the origin of angiosperms, Annu. Rev. Earth Planet. Sci., 2012, vol. 40, pp. 301–326.

    Article  CAS  Google Scholar 

  23. Dulin, M.W. and Kirchoff, B.K., Paedomorphosis, secondary woodiness, and insular woodiness in plants, Bot. Rev., 2010, vol. 76, no. 4, pp. 405–490.

    Article  Google Scholar 

  24. Eames, A.J., Morphology of the Angiosperms, New York: McGraw-Hill, 1961.

    Book  Google Scholar 

  25. Endress, P.K., The morphological relationship between carpels and ovules in angiosperms: pitfalls of morphological interpretation, Bot. J. Linn. Soc., 2019, vol. 189, no. 3, pp. 201–227.

    Article  Google Scholar 

  26. Feild, T.S. and Arens, N.C., Form, function and environments of the early angiosperms: Merging extant phylogeny and ecophysiology with fossils, New Phytol., 2005, vol. 166, no. 2, pp. 383–408.

    Article  PubMed  Google Scholar 

  27. Feild, T.S. and Balun, L., Xylem hydraulic and photosynthetic function of Gnetum (Gnetales) species from Papua New Guinea, New Phytol., 2008, vol. 177, no. 3, pp. 665–675.

    Article  CAS  PubMed  Google Scholar 

  28. Feild, T.S., Chatelet, D.S., and Brodribb, T.J., Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms, Geobiology, 2009, vol. 7, no. 2, pp. 237–264.

    Article  CAS  PubMed  Google Scholar 

  29. Flores-Rentería, L., Vázquez-Lobo, A., Whipple, A.V., Piñero, D., Márquez-Guzmán, J., and Dominguez, C.A., Functional bisporangiate cones in Pinus johannis (Pinaceae): implications for the evolution of bisexuality in seed plants, Am. J. Bot., 2011, vol. 98, no. 1, pp. 130–139.

    Article  PubMed  Google Scholar 

  30. Friedman, W.E., The evolution of double fertilization and endosperm: an “historical” perspective, Sex. Plant Reprod., 1998, vol. 11, no. 1, pp. 6–16.

    Article  Google Scholar 

  31. Friedman, W.E., The meaning of Darwin’s “abominable mystery,” Am. J. Bot., 2009, vol. 96, no. 1, pp. 5–21.

    Article  PubMed  Google Scholar 

  32. Friedman, W.E., Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae), Am. J. Bot., 2015, vol. 102, no. 2, pp. 312–324.

    Article  PubMed  Google Scholar 

  33. Friedman, W.E. and Carmichael, J.S., Double fertilization in Gnetales: implications for understanding reproductive diversification among seed plants, Int. J. Plant Sci., 1996, vol. 157, suppl. 6, pp. S77–S94.

    Article  Google Scholar 

  34. Friedman, W.E. and Ryerson, K.C., Reconstructing the ancestral female gametophyte of angiosperms: insights from Amborella and other ancient lineages of flowering plants, Am. J. Bot., 2009, vol. 96, no. 1, pp. 129–143.

    Article  PubMed  Google Scholar 

  35. Friis, E.M. and Endress, P.K., Origin and evolution of angiosperm flowers, Adv. Bot. Res., 1990, vol. 17, pp. 99–162.

    Article  Google Scholar 

  36. Friis, E.M., Pedersen, K.R., and Crane, P.R., Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous, Nature, 2001, vol. 410, no. 6826, pp. 357–360.

    Article  CAS  PubMed  Google Scholar 

  37. Friis, E.M., Crane, P.R., and Pedersen, K.R., Early Flowers and Angiosperm Evolution, Cambridge Univ. Press, 2011.

    Book  Google Scholar 

  38. Friis, E.M., Doyle, J.A., Endress, P.K., and Leng, Q., Archaefructus—angiosperm precursor or specialized early angiosperm? Trends Plant Sci., 2003, vol. 8, no. 8, pp. 369–373.

    Article  CAS  PubMed  Google Scholar 

  39. Friis, E.M., Pedersen, K.R., von Balthazar, M., Grimm, G.W., and Crane, P.R., Monetianthus mirus gen. et sp. nov., a nymphaealean flower from the Early Cretaceous of Portugal, Int. J. Plant Sci., 2009, vol. 170, no. 8, pp. 1086–1101.

    Article  Google Scholar 

  40. Frohlich, M.W. and Parker, D.S., The mostly male theory of flower evolutionary origins: From genes to fossils, Syst. Bot., 2000, vol. 25, no. 2, pp. 155–170.

    Article  Google Scholar 

  41. Gambaryan, P.P., Numerical taxonomy, Zh. Obshch. Biol., 1970, vol. 31, no. 4, pp. 34–38.

    Google Scholar 

  42. Gambaryan, P.P., Role of aquatic environment in evolution of flowering plants, Biol. Zh. Arm., 1975, vol. 26, no. 1, pp. 60–65.

    Google Scholar 

  43. Gandolfo, M.A., Nixon, K.C., and Crepet, W.L., Cretaceous flowers of Nymphaeaceae and implications for complex insect entrapment pollination mechanisms in early angiosperms, Proc. Natl Acad. Sci. U.S.A., 2004, vol. 101, no. 21, pp. 8056–8060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gasser, C.S. and Skinner, D.J., Development and evolution of the unique ovules of flowering plants, Curr. Top. Dev. Biol., 2019, vol. 131, pp. 373–399.

    Article  PubMed  Google Scholar 

  45. Goremykin, V., Bobrova, V., Pahnke, J., Troitsky, A., Antonov, A., and Martin, W., Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support gnetalean affinities of angiosperms, Mol. Biol. Evol., 1996, vol. 13, no. 2, pp. 383–396.

    Article  CAS  PubMed  Google Scholar 

  46. Groover, A.T., What genes make a tree a tree? Trends Plant Sci., 2005, vol. 10, no. 5, pp. 210–214.

    Article  CAS  PubMed  Google Scholar 

  47. Hansen, A., Hansmann, S., Samigullin, T., Antonov, A., and Martin, W., Gnetum and the angiosperms: molecular evidence that their shared morphological characters are convergent, rather than homologous, Mol. Biol. Evol., 1999, vol. 16, no. 7, pp. 1006–1006.

    Article  CAS  Google Scholar 

  48. Herendeen, P.S., Friis, E.M., Pedersen, K.R., and Crane, P.R., Palaeobotanical redux: revisiting the age of the angiosperms, Nat. Plants, 2017, vol. 3, no. 3, pp. 17015.

    Article  PubMed  Google Scholar 

  49. Ickert-Bond, S.M. and Renner, S.S., The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times, J. Syst. Evol., 2016, vol. 54, no. 1, pp. 1–16.

    Article  Google Scholar 

  50. Ingram, V., From fossils to food: trade in Gnetum species in the Congo Basin, Proc. SWC2010 Int. Conf. “People, Forests and the Environment: Coexisting in Harmony, Casablanca, 2010. https://www.researchgate.net/publication/266597341_From_fossils_to_food_Trade_in_ Gnetum_species_in_the_Congo_Basin.

  51. Ji, Q., Li, H., Bowe, L.M., Liu, Y., and Taylor, D.W., Early Cretaceous Archaefructus eoflora sp. nov. with bisexual flowers from Beipiao, Western Liaoning, China, Acta Geol. Sin. Engl., 2004, vol. 78, no. 4, pp. 883–892.

    Google Scholar 

  52. Jörgensen, A. and Rydin, C., Reproductive morphology in the Gnetum cuspidatum group (Gnetales) and its implications for pollination biology in the Gnetales, Plant Ecol. Evol., 2015, vol. 148, no. 3, pp. 387–396.

    Article  Google Scholar 

  53. Khramov, A.V. and Lukashevich, E.D., A Jurassic dipteran pollinator with an extremely long proboscis, Gondwana Res., 2019, vol. 71, pp. 210–215.

    Article  Google Scholar 

  54. Labandeira, C.C. and Currano, E.D., The fossil record of plant-insect dynamics, Annu. Rev. Earth Planet. Sci., 2013, vol. 41, pp. 287–311.

    Article  CAS  Google Scholar 

  55. Li, H.L., A theory on the ancestry of angiosperms, Acta Biotheor., 1960, vol. 13, no. 4, pp. 185–202.

    Article  Google Scholar 

  56. Li, H. and Taylor, D.W., Vessel-bearing stems of Vasovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China, Am. J. Bot., 1999, vol. 86, no. 11, pp. 1563–1575.

    Article  CAS  PubMed  Google Scholar 

  57. Maheshwari, P., Contributions to the morphology of Ephedra foliate, Boiss, Proc. Natl. Acad. Sci., India, Sect. B, 1935, vol. 1, no. 10, pp. 586–606.

    Google Scholar 

  58. Martens, P., Les Gnétophytes, in Encyclopedia of Plant Anatomy, Vol. 12: Anatomy of Phylogenetically Important Plant Groups, Stuttgart: Borntraeger, 1971, part 2.

  59. Mauseth, J.D., Theoretical aspects of surface-to-volume ratios and water-storage capacities of succulent shoots, Am. J. Bot., 2000, vol. 87, no. 8, pp. 1107–1115.

    Article  CAS  PubMed  Google Scholar 

  60. Mauseth, J.D., Structure–function relationships in highly modified shoots of Cactaceae, Ann. Bot., 2006, vol. 98, no. 5, pp. 901–926.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Melville, R., A new theory of the angiosperm flower, Nature, 1960, vol. 188, no. 4744, pp. 14–18.

    Article  Google Scholar 

  62. Melville, R., A new theory of the angiosperm flower: I. Gynoecium, Kew Bull., 1962, vol. 16, no. 1, pp. 1–50.

    Article  Google Scholar 

  63. Meyen, S.V., Hypothesis of the origin of angiosperms from bennettites by gamoheterotopy (transfer of characters from one sex to another), Zh. Obshch. Biol., 1986, vol. 47, no. 3, pp. 291–309.

    Google Scholar 

  64. Meyen, S.V., Origin of the angiosperm gynoecium by gamoheterotopy, Bot. J. Linn. Soc., 1988, vol. 97, no. 2, pp. 171–178.

    Article  Google Scholar 

  65. Muhammad, A. and Sattler, R., Vessel structure of Gnetum and the origin of angiosperms, Am. J. Bot., 1982, vol. 69, no. 6, pp. 1004–1021.

    Article  Google Scholar 

  66. Mulcahy, D.L. and Mulcahy, G.B., The effects of pollen competition, Am. Sci., 1987, vol. 75, no. 1, pp. 44–50.

    Google Scholar 

  67. Mundry, M. and Stützel, T., Morphogenesis of the reproductive shoots of Welwitschia mirabilis and Ephedra distachya (Gnetales), and its evolutionary implications, Org. Diversity Evol., 2004, vol. 4, nos. 1–2, pp. 91–108.

    Article  Google Scholar 

  68. Nixon, K.C., Crepet, W.L., Stevenson, D., and Friis, E.M., A reevaluation of seed plant phylogeny, Ann. Mo. Bot. Gard., 1994, vol. 81, no. 3, pp. 484–533.

    Article  Google Scholar 

  69. Pautov, A.A. and Pagoda, Ya.O., Structural diversity of leaf epidermis in genus Gnetum (Gnetaceae), Bot. Zh., 2015, vol. 100, no. 2, pp. 171–177.

    Google Scholar 

  70. Pélabon, C., Hennet, L., Bolstad, G.H., Albertsen, E., Opedal, Ø.H., et al., Does stronger pollen competition improve offspring fitness when pollen load does not vary? Am. J. Bot., 2016, vol. 103, no. 3, pp. 522–531.

    Article  PubMed  CAS  Google Scholar 

  71. Ponomarenko, A.G., Paleobiology of angiospermization, Paleontol. Zh., 1998, no. 4, pp. 3–10.

  72. Povilus, R.A., Losada, J.M., and Friedman, W.E., Floral biology and ovule and seed ontogeny of Nymphaea thermarum, a water lily at the brink of extinction with potential as a model system for basal angiosperms, Ann. Bot., 2015, vol. 115, no. 2, pp. 211–226.

    Article  PubMed  CAS  Google Scholar 

  73. Regal, P.J., Ecology and evolution of flowering plant dominance, Science, 1977, vol. 196, no. 4290, pp. 622–629.

    Article  CAS  PubMed  Google Scholar 

  74. Ren, D., Labandeira, C.C., Santiago-Blay, J.A., Rasnitsyn, A., Shih, C., et al., A probable pollination mode before angiosperms: Eurasian, long-proboscid scorpionflies, Science, 2009, vol. 326, no. 5954, pp. 840–847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rothwell, G.W., Crepet, W.L., and Stockey, R.A., Is the anthophyte hypothesis alive and well? New evidence from the reproductive structures of Bennettitales, Am. J. Bot., 2009, vol. 96, no. 1, pp. 296–322.

    Article  PubMed  Google Scholar 

  76. Rudall, P.J., Sokoloff, D.D., Remizowa, M.V., Conran, J.G., Davis, J.I., et al., Morphology of Hydatellaceae, an anomalous aquatic family recently recognized as an early-divergent angiosperm lineage, Am. J. Bot., 2007, vol. 94, no. 7, pp. 1073–1092.

    Article  PubMed  Google Scholar 

  77. Saarela, J.M., Rai, H.S., Doyle, J.A., Endress, P.K., Mathews, S., et al., Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree, Nature, 2007, vol. 446, no. 7133, pp. 312–315.

    Article  CAS  PubMed  Google Scholar 

  78. Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J.A., Endress, P.K., et al., The ancestral flower of angiosperms and its early diversification, Nat. Commun., 2017, vol. 8, pp. 16047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Schweitzer, H.J., Die räto-jurassischen Floren des Iran und Afghanistans. 4. Die rätische Zwitterblüte Irania hermaphroditica nov. spec. und ihre Bedeutung für die Phylogenie der Angiospermen, Palaeontographica, 1977, vol. 161, pp. 98–145.

    Google Scholar 

  80. Shamrov, I.I., Semyazachatok tsvetkovykh rastenii: stroenie, funktsii, proiskhozhdenie (Ovule of Flowering Plants: Structure, Functions, and Origin), Moscow: KMK, 2008.

  81. Shipunov, A.V. and Sokoloff, D.D., Schweitzeria is a new name for Irania Schweitzer (fossil Gymnospermae), Byull. Mosk. O-va. Ispyt. Prir., Otd. Biol., 2003, vol. 108, no. 5, pp. 89–90.

    Google Scholar 

  82. Sokoloff, D.D. and Timonin, A.K., Morphological and molecular genetic data on the origin of a flower: towards synthesis, Zh. Obshch. Biol., 2007, vol. 68, no. 2, pp. 83–97.

    Google Scholar 

  83. Sokoloff, D.D., Remizowa, M.V., El, E.S., Rudall, P.J., and Bateman, R.M., Supposed Jurassic angiosperms lack pentamery, an important angiosperm-specific feature, New Phytol., 2019. https://doi.org/10.1111/nph.15974

  84. Sun, G., Ji, Q., Dilcher, D.L., Zheng, S., Nixon, K.C., and Wang, X., Archaefructaceae, a new basal angiosperm family, Science, 2002, vol. 296, no. 5569, pp. 899–904.

    Article  CAS  PubMed  Google Scholar 

  85. Takhtajan, A.L., Vysshie rasteniya (The Higher Plants), Moscow: Akad. Nauk SSSR, 1956, vol. 1.

  86. Takhtajan, A.L., Osnovy evolyutsionnoi morfologii pokrytosemennykh (Fundamentals of Evolutionary Morphology of Angiosperms), Leningrad: Nauka, 1964.

  87. Takhtajan, A.L., Proiskhozhdenie i rasselenie tsvetkovykh rastenii (Origin and Distribution of Flowering Plants), Leningrad: Nauka, 1970.

  88. Taylor, D.W. and Hickey, L.J., Introduction: the challenge of flowering plant history, in Flowering Plant Origin, Evolution and Phylogeny, Boston: Springer-Verlag, 1996, pp. 1–7.

    Book  Google Scholar 

  89. Taylor, D.W., Brenner, G.J., and Basha, S.D.H., Scutifolium jordanicum gen. et sp. nov. (Cabombaceae), an aquatic fossil plant from the Lower Cretaceous of Jordan, and the relationships of related leaf fossils to living genera, Am. J. Bot., 2008, vol. 95, no. 3, pp. 340–352.

    Article  PubMed  Google Scholar 

  90. Tekleva, M.V. and Krassilov, V.A., Comparative pollen morphology and ultrastructure of modern and fossil gnetophytes, Rev. Palaeobot. Palynol., 2009, vol. 156, nos. 1–2, pp. 130–138.

    Article  Google Scholar 

  91. Thompson, W.P., The morphology and affinities of Gnetum, Am. J. Bot., 1916, vol. 3, no. 4, pp. 135–184.

    Article  Google Scholar 

  92. Thompson, W.P., Independent evolution of vessels in Gnetales and angiosperms, Bot. Gaz., 1918, vol. 65, no. 1, pp. 83–90.

    Article  Google Scholar 

  93. Vinter, A.N. and Shamrov, I.I., Development of the ovule and embryo sac in Nuphar lutea (Nymphaeaceae), Bot. Zh., 1991, vol. 76, no. 3, pp. 378–390.

    Google Scholar 

  94. Wang, X., A biased, misleading review on early angiosperms, Nat. Sci., 2017, vol. 9, no. 12, pp. 399–405.

    Google Scholar 

  95. Wang, X. and Zheng, X.T., Reconsiderations on two characters of early angiosperm Archaefructus, Palaeoworld, 2012, vol. 21, nos. 3–4, pp. 193–201.

    Article  CAS  Google Scholar 

  96. Wang, Z.Q., A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny, Ann. Bot., 2004, vol. 94, no. 2, pp. 281–288.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wettstein, R., Rukovodstvo po sistematike rastenii (Guide for Systematics of Plants), Moscow: Izd. M. i S. Sabashnikovykh, 1912, vol. 2, part 2.

  98. Williams, J.H. and Friedman, W.E., Identification of diploid endosperm in an early angiosperm lineage, Nature, 2002, vol. 415, no. 6871, pp. 522–526.

    Article  PubMed  Google Scholar 

  99. Won, H. and Renner, S.S., Dating dispersal and radiation in the gymnosperm Gnetum (Gnetales)—clock calibration when outgroup relationships are uncertain, Syst. Biol., 2006, vol. 55, no. 4, pp. 610–622.

    Article  PubMed  Google Scholar 

  100. Yamada, T., Ito, M., and Kato, M., Expression pattern of INNER NO OUTER homologue in Nymphaea (water lily family, Nymphaeaceae), Dev. Genes Evol., 2003, vol. 213, no. 10, pp. 510–513.

    Article  CAS  PubMed  Google Scholar 

  101. Yamada, T., Hirayama, Y., Imaichi, R., and Kato, M., AINTEGUMENTA homolog expression in Gnetum (gymnosperms) and implications for the evolution of ovulate axes in seed plants, Evol. Dev., 2008, vol. 10, no. 3, pp. 280–287.

    Article  CAS  PubMed  Google Scholar 

  102. Yamada, T., Sasaki, Y., Hashimoto, K., Nakajima, K., and Gasser, C.S., CORONA, PHABULOSA and PHAVOLUTA collaborate with BELL1 to confine WUSCHEL expression to the nucellus in Arabidopsis ovules, Development, 2016, vol. 143, no. 3, pp. 422–426.

    CAS  PubMed  Google Scholar 

  103. Yamada, T., Yokota, S.Y., Hirayama, Y., Imaichi, R., Kato, M., and Gasser, C.S., Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms, Plant J., 2011, vol. 67, no. 1, pp. 26–36.

    Article  CAS  PubMed  Google Scholar 

  104. Yang, Y., Xie, L., and Ferguson, D.K., Protognetaceae: a new gnetoid macrofossil family from the Jurassic of northeastern China, Perspect. Plant Ecol. Evol. Syst., 2017, vol. 28, pp. 67–77.

    Article  Google Scholar 

  105. Zhang, X., Liu, W., and Wang, X., How the ovules get enclosed in magnoliaceous carpels, PLoS One, 2017, vol. 12, no. 4, p. e0174955.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Zhang, X., Zhang, Z., and Zhao, Z., Floral ontogeny of Illicium lanceolatum (Schisandraceae) and its implications on carpel homology, Phytotaxa, 2019, vol. 416, no. 3, pp. 200–210.

    Article  Google Scholar 

  107. Zimmermann, W., Die Phylogenie der Pflanzen: Ein Überblick über Tatsachen und Probleme, Stuttgart: G. Fischer, 1959.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

When preparing the article, the authors consulted with S.V. Kuptsov, A.V. Bobrov, and E.A. Kuzmicheva. N.V. Kryukova turned the sketch of the presented diagram of the hypothetical megasporophore into an elegant electronic drawing. A.A. Panyutina turned good intentions of the senior author to complete what he had begun many years ago into a real plan for the preparation of a publication and constantly prevented distraction from the work on the manuscript, carrying out coordination, technical support, and editing. An invaluable role in improving the article was played by the constructive comments of the reviewers and their advice on the inclusion of additional literature that was missed in the first stage of manuscript preparation. The commentary by B.B. Zhukov (https://bbzhukov.livejournal.com/110010.html) turned out to be very valuable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kuznetsov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavel P. Gambaryan, Kuznetsov, A.N. Gnetum and Nymphaeaceans as Models for a Scenario of the Origin of Morphotype of Flowering Plants. Biol Bull Rev 11, 237–253 (2021). https://doi.org/10.1134/S2079086421030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421030038

Navigation