Skip to main content
Log in

Survival of United Populations in Unstable Environments

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

In this work, computer modeling was used to study the influence of the polymorphism, specialization, cooperation, and unity of a population on its dynamics in an unstable environment. Monomorphic and polymorphic populations, specialization, and the generalization of individuals in relation to resource niches, as well as the possibility of the redistribution of resources between individuals, are considered. The dynamics of the population size was studied in stable and unstable conditions with different amplitudes of fluctuations in the amount of available resources. It is shown that a single generalized (polymorphic) population in an unstable environment occupying all resource niches gains an advantage over a set of independent populations that are individually specialized for their own niches. There is a discussion of the social and economic analogs of the results, which indicate the effectiveness of unity and cooperation among community members in unstable environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aleshchenko, G.M. and Bukvareva, E.N., Model of phenotypic diversity of a population in a random environment, Zh. Obshch. Biol., 1991, vol. 52, no. 4, pp. 499–508.

    Google Scholar 

  2. Alexandrov, Yu.I., Active neuron, in Neiron. Obrabotka signalov. Plastichnost’. Modelirovanie: Fundamental’noe rukovodstvo (Neuron. Signal Processing. Plasticity. Modeling: Fundamental Manual), Sokolov, E.N., Filippov, V.A., and Chernorizov, A.M., Eds., Tyumen: Tyumen. Gos. Univ., 2008, pp. 33–58.

  3. Alexandrov, Yu.I. and Aleksandrova, N.L., Sub”ektivnyi opyt, kul’tura i sotsial’nye predstavleniya (Subjective Experience, Culture, and Social Perceptions), Moscow: Inst. Psikhol., Ross. Akad. Nauk, 2009.

  4. Alexandrov, Yu.I. and Kirdina, S.G., Mentality types and institutional matrices: a multidisciplinary approach, Sotsiol. Issled., 2012, no. 8, pp. 3–12.

  5. Alexandrov, Yu. and Kirdina, S., Toward integration of social mental and institutional models: systemic approach, Montenegrin J. Econ., 2013, vol. 9, no. 1, pp. 7–15.

    Google Scholar 

  6. Andras, P., Lazarus, J., and Roberts, G., Environmental adversity and uncertainty favor cooperation, BMC Evol. Biol., 2007, vol. 7, no. 1, p. 240.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anokhin, P.K., Filosofskie aspekty teorii funktsional’noi sistemy (Philosophical Aspects of the Theory of Functional System), Moscow: Nauka, 1978.

  8. Apanovich, V.V., Bezdenezhnykh, B.N., Znakov, V.V., Sams, M., Yaaskelainin, I., and Alexandrov, Yu.I., Differences in the brain supply of individual, cooperative and competitive behavior of subjects with analytical and holistic cognitive styles, Eksp. Psikhol., 2016, vol. 9, no. 2, pp. 5–22.

    Google Scholar 

  9. Arutyunova, K.R., Alexandrov, Y.I., and Hauser, M.D., Sociocultural influences on moral judgments: east–west, male–female, and young–old, Front. Psychol., 2016, vol. 7, p. 1334.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Axelrod, R.M., The Evolution of Cooperation, New York: Basic Books. 1984.

    Google Scholar 

  11. Baburin, V.L. and Chistyakov, P.A., Prostranstvo tsiklov: Mir–Rossiya–region (Space of Cycles: World–Russia–Region), Moscow: LKI, 2007.

  12. Brodsky, V.Ya., Direct cell-cell communications and social behavior of cells in mammals, protists, and bacteria. Possible causes of multicellularity, Russ. J. Dev. Biol., 2009, vol. 40, no. 2, pp. 69–82.

    Article  Google Scholar 

  13. Brosnan, S.F., Nonhuman species’ reactions to inequity and their implications for fairness, Soc. Justice Res., 2006, vol. 19, no. 2, pp. 153–185.

    Article  Google Scholar 

  14. Bukvareva, E.N., Rol’ nazemnykh ekosistem v regulyatsii klimata i mesto Rossii v postkiotskom protsesse (The Role of Terrestrial Ecosystems in Climate Regulation and the Place of Russia in the Post-Kyoto Process), Moscow: KMK, 2010.

  15. Bukvareva, E.N. and Aleshchenko, G.M., Diagram of the complication of biological hierarchy in a random environment, Usp. Sovrem. Biol., 1997, vol. 117, no. 1, pp. 18–32.

    Google Scholar 

  16. Bukvareva, E.N. and Aleshchenko, G.M., Optimization of the diversity of supraorganismal systems as one of the mechanisms of their development on the ecological, microevolutionary and evolutionary levels, Usp. Sovrem. Biol., 2010, vol. 130, no. 2, pp. 115–129.

    Google Scholar 

  17. Bukvareva, E.N. and Aleshchenko, G.M., Printsip optimal’nogo raznoobraziya biosistem (Principle of Optimal Diversity of Biological Systems), Moscow: KMK, 2013.

  18. Carja, O. and Feldman, M.W., An equilibrium for phenotypic variance in fluctuating environments owing to epigenetics, J. R. Soc. Interface, 2012, vol. 9, pp. 613–623.

    Article  PubMed  Google Scholar 

  19. Childs, D.Z., Metcalf, C.J.E., and Rees, M., Evolutionary bet-hedging in the real world: empirical evidence and challenges revealed by plants, Proc. R. Soc. B, 2010, vol. 277, no. 1697, pp. 3055–3064.

  20. D’Odorico, P., Laio, F., Ridolfi, L., and Lerdau, M.T., Biodiversity enhancement induced by environmental noise, J. Theor. Biol., 2008, vol. 255, pp. 332–337.

    Article  PubMed  Google Scholar 

  21. Davis, M.B. and Shaw, R.G., Range shifts and adaptive responses to quaternary climate change, Science, 2001, vol. 292, pp. 673–679.

    Article  CAS  PubMed  Google Scholar 

  22. Eisenhauer, N., Scheu, S., and Jousset, A., Bacterial diversity stabilizes community productivity, PLoS One, 2012, vol. 7, no. 3, pp. 1–5.

    Article  CAS  Google Scholar 

  23. Gonzalez, A. and Holt, R.D., The inflationary effects of environmental fluctuations in source–sink systems, Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, pp. 14872–14877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grechenko, T.N., Kharitonov, A.N., Zhegallo, A.V., and Alexandrov, Yu.I., Psychophysiological analysis of oscillatory processes in the behavior of biosocial systems, Psikhol. Zh., 2015, vol. 36, no. 5, pp. 75–86.

    Google Scholar 

  25. Gumilev, L.N., Climate change and nomad migration, Priroda (Moscow), 1972, no. 4, pp. 44–52.

  26. Henrich, J., Heine, S.J., and Norenzayan, A., The weirdest people in the world? Behav. Brain Sci., 2010, vol. 33, nos. 2–3, pp. 61–83.

    Article  PubMed  Google Scholar 

  27. Isbell, F., Craven, D., Connolly, J., Loreau, M., Schmid, B., et al., Biodiversity increases the resistance of ecosystem productivity to climate extremes, Nature, 2015, vol. 526, no. 7574, pp. 574–577.

    Article  CAS  PubMed  Google Scholar 

  28. Jaeggi, A.V. and Gurven, M., Natural cooperators: food sharing in humans and other primates, Evol. Anthropol., 2013a, vol. 22, pp. 186–195.

    Article  PubMed  Google Scholar 

  29. Jaeggi, A.V. and Gurven, M., Reciprocity explains food sharing in humans and other primates independent of kin selection and tolerated scrounging: a phylogenetic meta-analysis, Proc. R. Soc. B, 2013b, vol. 280, no. 1768, art. ID 20131615.

  30. Kaplan, H.S., Schniter, E., Smith, V.L., and Wilson, B.J., Risk and the evolution of human exchange, Proc. R. Soc. B, 2012, vol. 279, pp. 2930–2935.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kaznatcheev, A. and Shultz, T.R., Ethnocentrism maintains cooperation, but keeping one’s children close fuels it, Proc. 33rd Annual Conf. of the Cognitive Science Society, Boston, 2011, pp. 3174–3179.

  32. Kirdina, S.G., Institutsional’nye matritsy i razvitie Rossii. Vvedenie v X–Y-teoriyu (Institutional Matrices and the Development of Russia. Introduction to the X–Y Theory), St. Petersburg: Nestor-Istoriya, 2014.

  33. Kirdina, S.G., Kuznetsova, A.N., and Sen’ko, O.V., Climate and institutional matrices, Sotsiol. Issled., 2015, no. 9, pp. 3–13.

  34. Kol’tsova, V.A. and Zhuravlev, A.L., Essential characteristics and factors of the formation of the Russian mentality, Psikhol. Zh., 2017, vol. 38, no. 3, pp. 5–17.

    Google Scholar 

  35. Korotaev, A.V., Khalturina, D.A., and Bozhevol’nov, Yu.V., Zakony istorii: Vekovye tsikly i tysyacheletnie trendy. Demografiya, ekonomika, voiny (Laws of History: Secular Cycles and Millennial Trends. Demographics, Economics, and Wars), Kradin, N.N., Ed., Moscow: Lenand, 2015, 4th ed.

    Google Scholar 

  36. Krebs, C., Boonstra, R., Boutin, S., and Sinclair, A., What drives the 10-year cycle of snowshoe hares? BioScience, 2001, vol. 51, no. 1, pp. 25–35.

    Article  Google Scholar 

  37. Krylov, A.K., Neuron activity as a path to obtain metabolites, Trudy XIX Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Neiroinformatika-2017” (Proc. XIX Int. Sci.-Tech. Conf. “Neuroinformatics-2017”), Moscow: Nats. Issled. Yad. Univ., MIFI, 2017, part 1, pp. 154–163.

  38. Kussell, E. and Leibler, S., Phenotypic diversity, population growth, and information in fluctuating environments, Science, 2005, vol. 309, pp. 2075–2078.

    Article  CAS  PubMed  Google Scholar 

  39. Laland, K.N. and Galef, B.G., Jr., The Question of Animal Culture, Cambridge, MA: Harvard Univ. Press, 2009.

    Book  Google Scholar 

  40. Magistretti, P.J., Role of glutamate in neuron-glia metabolic coupling, Am. J. Clin. Nutr., 2009, vol. 90, pp. 875–880.

    Article  CAS  Google Scholar 

  41. Mangel, M. and Clark, C.W., Dynamic Modeling in Behavioral Ecology, New Jersey: Princeton Univ. Press, 1989.

    Book  Google Scholar 

  42. Matias, M., Combe, M., Barbera, C., and Mouquet, N., Ecological strategies shape the insurance potential of biodiversity, Front. Microbiol., 2013, vol. 3, pp. 1–9.

    Article  Google Scholar 

  43. Nedorezov, L.V., Approximation of time series of Paramecia caudatum dynamics by the Verhulst and Gompertz models: a non-traditional approach, Biophysics (Moscow), 2015, vol. 60, no. 3, pp. 457–465.

    Article  CAS  Google Scholar 

  44. Nefedov, S.A., Neo-Malthusianism in the modern methodology of history, Herald Russ. Acad. Sci., 2012, vol. 82, no. 6, pp. 453–460.

    Article  Google Scholar 

  45. Nisbett, R.E., The Geography of Thought: How Asians and Westerners Think Differently…and Why, New York: Free Press, 2003.

    Google Scholar 

  46. Nisbett, R.E., Peng, K, Choi, I., and Norenzayan, A., Culture and systems of thought. Holistic versus analytic cognition, Psychol. Rev., 2001, vol. 108, pp. 291–310.

    Article  CAS  PubMed  Google Scholar 

  47. Norberg, J., Swaney, D.P., Dushoff, J., Lin, J., Casagrandi, R., and Levin, S.A., Phenotypic diversity and ecosystem functioning in changing environments: a theoretical framework, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, no. 20, pp. 11376–11381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Peng, W. and Hsieh, G., The influence of competition, cooperation, and player relationship in a motor performance centered computer game, Comput. Hum. Behav., 2012, vol. 28, no. 6, pp. 2100–2106.

    Article  Google Scholar 

  49. Pereda, M., Zurro, D., Santos, J.I., Godino, I.B., Alvarez, M., et al., Emergence and evolution of cooperation under resource pressure, Nat. Sci. Rep., 2017, vol. 7, p. 45574.

    CAS  Google Scholar 

  50. Plass, J.L., O’Keefe, P.A., Homer, B.D., Case, J., Hayward, E.O., et al., The impact of individual, competitive, and collaborative mathematics game play on learning, performance, and motivation, J. Educ. Psychol., 2013, vol. 105, no. 4, pp. 1050–1066.

    Article  Google Scholar 

  51. Ranta, E., Kaitala, V., and Lundberg, P., The spatial dimension in population fluctuations, Science, 1997, vol. 278, no. 5343, pp. 1621–1623.

    Article  CAS  PubMed  Google Scholar 

  52. Reutov, E.V., Reutova, M.N., and Shavyrina, I.V., Reciprocity in mutual aid networks (based on the materials of a regional study), Sotsiol. Issled., 2019, no. 3, pp. 106–117.

  53. Riera, J.J., Schousboe, A., Waagepetersen, H.S., Howarth, C., and Hyder, F., The micro-architecture of the cerebral cortex: functional neuroimaging models and metabolism, Neuroimage, 2008, vol. 40, pp. 1436–1459.

    Article  PubMed  Google Scholar 

  54. Riznichenko, G.Yu. and Rubin, A.B., Matematicheskie modeli biologicheskikh produktsionnykh protsessov: Uchebnoe posobie (Mathematical Models of Biological Production Processes: Manual), Moscow: Mosk. Gos. Univ., 1993.

  55. Severtsov, A.S., Evolyutsionnaya ekologiya pozvonochnykh zhivotnykh (Evolutionary Ecology of Vertebrates), Moscow: KMK, 2013.

  56. Shvyrkov, V.B., Vvedenie v ob”ektivnuyu psikhologiyu. Neironal’nye osnovy psikhiki (An Introduction to Objective Psychology. Neural Foundations of the Psychics), Moscow: Inst. Psikhol., Ross. Akad. Nauk, 1995.

  57. Starrfelt, J. and Kokko, H., Bet-hedging—a triple trade-off between means, variances and correlations, Biol. Rev., 2012, vol. 87, no. 3, pp. 742–755.

    Article  PubMed  Google Scholar 

  58. Stenseth, N.C., Chan, K.-S., Tong, H., Boonstra, R., Boutin, S., et al., Common dynamic structure of Canada lynx population within three climatic regions, Science, 1999, vol. 285, no. 5430, pp. 1071–1073.

    Article  CAS  PubMed  Google Scholar 

  59. Sznycer, D., Lopez Seal, M.F., Sell, A., Lim, J., Porat, R., et al., Support for redistribution is shaped by compassion, envy, and self-interest, but not a taste for fairness, Proc. Natl. Acad. Sci. U.S.A., 2017, vol. 114, no. 31, pp. 8420–8425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Talhelm, T., Zhang, X., Oishi, S., Shimin, C., Duan, D., et al., Large-scale psychological differences within China explained by rice versus wheat agriculture, Science, 2014, vol. 344, pp. 603–608.

    Article  CAS  PubMed  Google Scholar 

  61. Tan, J. and Hare, B., Bonobos share with strangers, PLoS One, 2013, vol. 8, no. 1, p. e51922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wienand, K., Frey, E., and Mobilia, M., Evolution of a fluctuating population in a randomly switching environment, Phys. Rev. Lett., 2017, vol. 119, p. 158301.

    Article  PubMed  Google Scholar 

  63. Yachi, S. and Loreau, M., Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 1463–1468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zaguskin, S.L., Ritmy kletki i zdorov’e cheloveka (Cell Rhythms and Human Health), Rostov-on-Don: Yuzhn. Fed. Univ., 2010.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-22045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Krylov.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by M. Batrukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, A.K., Markov, A.V. & Alexandrov, Y.I. Survival of United Populations in Unstable Environments. Biol Bull Rev 11, 213–225 (2021). https://doi.org/10.1134/S2079086421030063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086421030063

Navigation