Skip to main content
Log in

REMOVAL OF HEAVY METALS FROM WASTEWATER SOLUTION USING A MECHANICALLY ACTIVATED NOVEL ZEOLITIC MATERIAL

  • MINERAL DRESSING
  • Published:
Journal of Mining Science Aims and scope

Abstract

The removal of heavy metals from the wastewater solution using a novel zeolitic material was conceived and experimentally probed. The natural zeolite was ground in a planetary ball mill to increase negative surface charge and amorphization of the material as well as a conventional ball mill. The ground materials were used for the removal of heavy metals from the wastewater solution. The maximum removals were found to be 78% for Pb, 67% for Ni and 54% for Cd by using the conventional milled natural zeolitic material at pH 11. However, 93% of Pb, 72% of Ni and 57% of Cd were removed at pH 9 with the novel zeolitic material milled by a planetary ball mill. It was revealed that the novel zeolitic material produced by a planetary ball mill increased the absorption capacity of the heavy metals and reduced the alkali requirement for pH adjustment. The removal order of heavy metals with the novel zeolitic material is determined as follows: \(\mathrm{Pb}> \mathrm{Ni}>\mathrm{Cd}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

REFERENCES

  1. Timur, I., Senkal, B.F., Kaplan, O., Kaya, G., Ozcan, C., Karaaslan, N.M., and Yaman, M., Synthesis of New Polymeric Resin and its Application in Solid Phase Extraction of Copper in Water Samples Using STAT-FAAS, At. Spectrosc., 2009, vol. 30, no. 6, pp. 191–200.

  2. Shi, Z., Fan, D., Johnson, R.L., Tratnyek, P.G., Nurmi, J.T., Wu, Y., and Williams, K.H., Methods for Characterizing the Fate and Effects of Nano Zerovalent Iron during Groundwater Remediation,J. Contam. Hydrol., 2015, vol. 181, pp. 17–35.

  3. Zou, X., Zhao, Y., and Zhang, Z., Preparation of Hydroxyapatite Nanostructures with Different Morphologies and Adsorption Behavior on Seven Heavy Metals Ions, J. Contam. Hydrol., 2019, vol. 226, 103538.

  4. Li, H., Watson, J., Zhang, Y., Lu, H., and Liu, Z., Environment-Enhancing Process for Algal Wastewater Treatment, Heavy Metal Control and Hydrothermal Biofuel Production: A Critical Review,Bioresour. Technol., 2020, vol. 298, 122421.

  5. Alam, R., Ahmed, Z., and Howladar, M.F., Evaluation of Heavy Metal Contamination in Water, Soil and Plant around the Open Landfill Site Mogla Bazar in Sylhet, Bangladesh, Groundw. Sustain. Dev., 2020, vol. 10, 100311.

  6. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q., and Li, R., Heavy Metal Adsorption with Zeolites: The Role of Hierarchical Pore Architecture, Chem. Eng. J., 2019, vol. 359, pp. 363–372.

  7. Liu, L., Liu, S., Peng, H., Yang, Z., Zhao, L., and Tang, A., Surface Charge of Mesoporous Calcium Silicate and its Adsorption Characteristics for Heavy Metal Ions, Solid State Sci., 2020, vol. 99, 106072.

  8. Marani, D., Macchi, G., and Pagano, M., Lead Precipitation in the Presence of Sulphate and Carbonate: Testing of Thermodynamic Predictions, Water Res., 1995, vol. 29, no. 4, pp. 1085–1092.

  9. Howell, J.A., Future of Membranes and Membrane Reactors in Green Technologies and for Water Reuse, Desalination, 2004, vol. 162, pp. 1–11.

  10. Timur, I., Senkal, B.F., Karaaslan, N.M., Bal, T., Cengiz, E., and Yaman, M., Determination and Removing of Lead and Nickel in Water Samples by Solid Phase Extraction Using a Novel Remazol Black B-Sulfonamide Polymeric Resin, Curr. Anal. Chem., 2011, vol. 7, no. 4, pp. 286–95.

  11. Thakare, Y.N. and Jana, A.K., Performance of High Density Ion Exchange Resin (INDION225H) for Removal of Cu(II) from Waste Water,J. Environ. Chem. Eng., 2015, vol. 3, no. 2, pp. 1393–1398.

  12. Wang, Y., Yu, Y., Li, H., and Shen, C., Comparison Study of Phosphorus Adsorption on Different Waste Solids: Fly Ash, Red Mud and Ferric–Alum Water Treatment Residues, Int. J. Environ. Sci., 2016, vol. 50, pp. 79–86.

  13. Skorokhodov, V.F., Mesyats, S.P., Biryukov, V.V., and Ostapenko, S.P., Treatment Technology for Niobium-Bearing Ore Processing Wastewater of Various Ionic-Dispersion Compositions,J. Min. Sci., 2018, vol. 54, no. 4, pp. 671–680.

  14. Medyanik, N.L., Shevelin, I.Y., and Kakushkin, S.N., Mathematical Modeling of Mineralized Industrial Wastewater Treatment by Pressure Flotation, J. Min. Sci., 2018, vol. 54, no. 2, pp. 292–299.

  15. Smekal, A.G., Zum Mechanischen und Chemischen Verhalten von Calcitspaltflächen, Naturwissenschaften, 1952, vol. 39, pp. 428–429.

  16. Baláž, P., Mechanical Activation in Hydrometallurgy, Int. J. Miner. Process., 2003, vol. 72, pp. 341–354.

  17. Mucsi, G., A Review on Mechanical Activation and Mechanical Alloying in Stirred Media Mill, Chem. Eng. Res. Des., 2019, vol. 148, pp. 460–474.

  18. Boldyrev, V.V., Ten Years after the First International Conference on Mechanochemistry and Mechanical Alloying; Where We Are Now,J. Mater. Sci., 2004, vol. 39, pp. 4985–4986.

  19. Karge, H.G. and Weitkamp, J., Zeolites as Catalysts, Sorbents and Detergent Builders: Applications and Innovations, Elsevier Sci., Amsterdam, 1989.

  20. Kosanovic, C., Bronic, J., Subotic, B., Smit, I., Stubicar, M., Tonejc, A., and Yamamoto, T., Mechanochemistry of Zeolites: Part 1. Amorphization of Zeolites A and X and Synthetic Mordenite by Ball Milling, Zeolites, 1993, vol. 13, no. 4, pp. 261–268.

  21. Baxter, E.F., Bennett, T.D., Cairns, A.B., Brownbill, N.J., Goodwin, A.L., Keen, D.A., Chater, P.A., Blanc, F., and Cheetham, A.K., A Comparison of the Amorphization of Zeolitic Imidazolate Frameworks (ZIFs) and Aluminosilicate Zeolites by Ball-Milling, Dalton Trans., 2016, vol. 45, pp. 4258–4268.

  22. Yusupov, T.S., Shumskaya, L.G., Kondrat’ev, S.A., Kirillova, E.A., and Urakaev, F.Kh., Mechanical Activation by Milling in Tin-Containing Mining Waste Treatment, J. Min. Sci., 2019, vol. 55, no. 5, pp. 804–810.

  23. Kosanovic, C., Cižmek, A., Subotic, B., Šmit, I., Stubicar, M., and Tonejc, A., Mechanochemistry of Zeolites: Part 3. Amorphization of Zeolite ZSM-5 by Ball Milling, Zeolites, 1995, vol. 15, no. 1, pp. 51–57.

  24. Önal, M., Depci, T., Ceylan, C., and Kizilkaya, N., The Zeolite Deposit of Hekimhan in the Malatya Basin, IOP Conf. Ser.: Earth Environ. Sci., 2016, vol. 44, no. 4, 042011.

  25. Uçkun, S., Activation of Malatya Hekimhan Zeolites with Mechanochemical Method and Usage in Heavy Metal Adsorption,MSc. Thesis, 2019, Inonu University, Malatya (in Turkish).

  26. Riello, P., Quantitative Analysis of Amorphous Fraction in the Study of the Microstructure of Semi-Crystalline Materials, Diffraction Analysis of the Microstructure of Materials, Mittemeijer, E.J., Scardi, P. (Eds.), Springer Ser. Mater. Sci., Springer, Berlin, Heidelberg, 2004.

  27. Madsen, I., Scarlett, N., and Kern, A., Description and Survey of Methodologies for the Determination of Amorphous Content via X-Ray Powder Diffraction, Zeitschrift für Kristallographie Cryst. Mater., 2011, vol. 226, no. 12, pp. 944–955.

  28. Sarikaya, M., Yucel, A., Sezer, S., Uckun, S., and Depci, T., Characterization of Moganite Obtained from Natural Zeolite by Ball Milling,AJER, 2018, vol. 7, no. 1, pp. 230–234.

  29. Guzzo, P.L., Tino, A.A.A., and Santos, J.B., The Onset of Particle Agglomeration during the Dry Ultrafine Grinding of Limestone in a Planetary Ball Mill, Powder Technol., 2015, vol. 284, pp. 122–129.

  30. Kim, H.N., Kim, J.W., Kim, M.S., Lee, B.H., and Kim, J.C., Effects of Ball Size on the Grinding Behavior of Talc Using a High-Energy Ball Mill, Minerals, 2019, vol. 9, no. 668, pp. 1–16.

  31. Chen, Y., Lian, X., Li, Z., Zheng, S., and Wang, Z., Effects of Rotation Speed and Media Density on Particle Size Distribution and Structure of Ground Calcium Carbonate in a Planetary Ball Mill,Adv. Powder Technol., 2015, vol. 26, no. 2, pp. 505–510.

  32. Knieke, C., Sommer, M., and Peukert, W., Identifying the Apparent and True Grinding Limit, Powder Technol., 2009, vol. 195, no. 1, pp. 25–30.

  33. Sivashankari, L., Rajkishore, S.K., Lakshmanan, A., and Subramanian, K.S., Optimization of Dry Milling Process for Synthesizing Nano Zeolites, Int. J. Chem. Stud., 2019, vol. 7, no. 4, pp. 328–333.

  34. Bohács, K., Faitli, J., Bokányi, L., and Mucsi, G., Control of Natural Zeolite Properties by Mechanical Activation in Stirred Media Mill, Arch. Metall. Mater., 2017, vol. 62, no. 2, pp. 1399–1406.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Top Soner.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 6, pp. 147–160. https://doi.org/10.15372/FTPRPI20200613.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şükrü, U., Musa, S., Soner, T. et al. REMOVAL OF HEAVY METALS FROM WASTEWATER SOLUTION USING A MECHANICALLY ACTIVATED NOVEL ZEOLITIC MATERIAL. J Min Sci 56, 1010–1023 (2020). https://doi.org/10.1134/S1062739120060137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120060137

Keywords

Navigation