Skip to main content
Log in

MODELING PROPAGATION OF FRACTURES IN LAYERED ROCK MASS DURING BLASTING AND HYDRAULIC FRACTURING

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article presents the analytical model and calculation results on fracture growth in layered rock mass during blasting and hydraulic fracturing in oil reservoirs. The stress state of fractured elastic rock mass is found using 3D boundary element method. The influence of strength characteristics of layered rock mass on the shape, size and area of radial fractures is determined. The presence of a stronger layer in rock mass restrains cross sectional growth of induced fractures as compared with the existing fractures in surrounding rock mass, i.e. nonuniform fracture of rock mass along boreholes and probable oversizes are prevented in this case. It is possible to adjust the shape of fractures by changing distribution of an explosive along the borehole. During hydraulic fracturing, fractures propagate chiefly along a softer rock layer if present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Mosinets, V.N., Drobyashchee i seismicheskoe deistvie vzryva v gornykh porodakh (Crushing and Seismic Effect of Blasting in Rocks), Moscow: Nedra, 1976.

  2. Kutuzov, B.N. and Andrievsky, A.P., Novaya teoriya i novye tekhnologii razrusheniya gornykh porod udlinennymi zaryadami vzryvchatykh veshchestv (New Theory and New Technologies for Rock Destruction by Elongated Explosive Charges), Novosibirsk: Nauka, 2002.

  3. Aleksandrova, N.I. and Sher, E.N., Effect of Dilation on Rock Breaking by Explosion of a Cylindrical Charge, J. Min. Sci., 1999, vol. 35, no. 4, pp. 400–408.

  4. Vokhmin, S.A., Kurchin, G.S., Kirsanov, A.K., and Gribanova, D.A., Review of Existing Procedures for Calculating the Parameters of Failure Zones in a Rock Mass. Part I, Sovr. Probl. Nauk. Obr., 2015, no. 1, p. 401.

  5. Sher, E.N. and Chernikov, A.G., Calculation of Parameters of Radial Fractures Formed during Elongated Charge Blasting in Brittle Rocks,Fund. Prikl. Vopr. Gorn. Nauk, 2015, no. 2, pp. 299–303.

  6. Grigoryan, S.S., Some Problems of Mathematical Theory of Solid Rock Deformation and Failure, PMM, 1967, vol. 31, no. 4, pp. 643–669.

  7. Rodionov, V.N., Adushkin, V.V., Romashev, A.N., et al.,Mekhanicheskii effekt podzemnogo vzryva (Mechanical Effect of an Underground Explosion), Moscow: Nedra, 1971.

  8. Chadwick, P., Cox, A.D., and Hopkins, H.G., Mechanics of Deep Underground Explosions, Philosoph. Trans. Roy. Soc., London, 1964.

  9. Sher, E.N. and Aleksandrova, N.I., Dynamics of Development of Crushing Zone in Elastoplastic Medium in Camouflet Explosion of String Charge, J. Min. Sci., 1997, vol. 33, no. 6, pp. 529–535.

  10. Crouch, S.L. and Starfield, A.M., Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London, 1983.

  11. Peach, M. and Koehler, J.S., The Forces Exerted on Dislocations and the Stress Fields Produced by Them, Phys. Rev., 1950, vol. 80, no. 3, pp. 436–440.

  12. Mikhailov, A.M., Calculation of the Stresses around a Crack,J. Min. Sci., 2000, vol. 36, no. 5, pp. 445–451.

  13. Sher, E.N. and Chernikov, A.G., Calculation of Parameters of Radial Fractures Formed during Elongated Charge Blasting in Brittle Rocks,Fund. Prikl. Vopr. Gorn. Nauk, 2015, no. 2, pp. 299–303.

  14. Sher, E.N., Determination of Shape and Sizes of Radial Fractures in Layered Rock Mass that Formed during Borehole Charge Blasting and Hydraulic Fracturing, Fund. Prikl. Vopr. Gorn. Nauk, 2019, vol. 6, pp. 266–271

  15. Kristianovich, S.A. and Zheltov, Yu.P., Formation of Vertical Fractures by Means of Highly Viscous Fluids, Proc. of 4th World Petroleum Congress, Rome, Italy, 1955.

  16. Perkins, T.K. and Kern, L.R., Widths of Hydraulic Fractures,J. of Petroleum Technol., 1961, vol. 13, no. 9, pp. 937–949.

  17. Geertsma, J., Chapter 4, Two-Dimensional Fracture Propagation Models, Resent Advances in Hydraulic Fracturing, Monograph Series, Eds. Gigley J., Holditch S., Veatch D. N. R., Richardson TX, PE, 1989.

  18. Adachi, J.I., Detournay, E., and Peirce, A.P., An Analysis of the Classical Pseudo-3D Model for Hydraulic Fracture with Equilibrium Height Growth across Stress Barriers, J. Rock Mech. and Min. Sci., 2010, vol. 47, no. 4, pp. 625–639.

  19. Zhang, X., Wu, B., Jeffrey, R.G., Connell, L.D., and Zhang, G., A Pseudo-3D Model for Hydraulic Fracture Growth in a Layered Rock,Int. J. of Solids and Structures, 2017, vols. 115, 116, pp. 208–223.

  20. Xu, B., Liu, Y., Wang, Y., Yang, G., Yu, Q., and Wang, F., A New Method and Application of Full 3D Numerical Simulation for Hydraulic Fracturing Horizontal Fracture, Energies, 2019, vol. 12, no. 1 (48).

  21. Serdyukov, S.V., Patutin, A.V., Shilova, T.V., Azarov, A.V., and Rybalkin, L.A., Technologies for Increasing Efficiency of Solid Mineral Mining with Hydraulic Fracturing, J. Min. Sci., 2019, vol. 55, no. 4, pp. 596–602

  22. Alekseenko, O.P. and Vaisman, A.M., Nonsymmetric Growth of Hydraulic Fracture, MTT, 1996, no. 1, pp. 107–113.

  23. Kolykhalov, I.V., Panov, A.V., and Skulkin, A.A., Influence of Working Fluid Properties on Symmetry of the Shape of Hydraulic Fracture Transverse to the Borehole, Fund. Prikl. Vopr. Gorn. Nauk, 2019, vol. 6, no. 3, pp. 77–81.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Sher.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 6, pp. 42–53. https://doi.org/10.15372/FTPRPI20200604.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sher, E.N. MODELING PROPAGATION OF FRACTURES IN LAYERED ROCK MASS DURING BLASTING AND HYDRAULIC FRACTURING. J Min Sci 56, 914–924 (2020). https://doi.org/10.1134/S1062739120060046

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120060046

Keywords

Navigation