Skip to main content
Log in

ESTIMATION OF FIRE-RELATED PARAMETERS IN TUNNELS FROM ANALYTICAL MODELING OF WARM ADVECTION

  • MINING THERMOPHYSICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article presents the analytical research data on the convective motion dynamics and air temperature variation in a mine tunnel after cutoff of a drag source during fire. The single-valued prediction is only possible based on the stability theory of convection currents. The mathematical modeling of advection currents of counter air flows in a tunnel is performed at longitudinal gradient of temperature. The analytical formulas are obtained to calculate advection vortex and air flow velocity in vortex as function of burning time and temperature at the source. The range of hot airflow weakly depends on the burning temperature, insignificantly grows within a day and makes 850 m at the temperature of 1000°C. The developed procedure allows evaluating the fire size and duration, as well as the air flow velocities in tunnels after the drag source cutoff.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

REFERENCES

  1. Osipov, S.N. and Zhadan, V.M., Ventilyatsiya shakht pri podzemnykh pozharakh (Ventilation of Mines in Case of Underground Fires), Moscow: Nedra, 1973.

  2. Shalimov, A.V., Numerical Modeling of Air Flows in Mines under Emergency State Ventilation, J. Min. Sci., 2011, vol. 47, no. 6, pp. 807–813.

  3. Zhukovets, A.N., Grekov, S.P., and Chuntu, G.I., Calculating the Change in the Thermal Field in Mine Workings beyond the Seat of a Fire with Short-Circuiting of the Ventilation Currents, J. Min. Sci., 1972, vol. 8, no. 5, pp. 587–589.

  4. Krasnoshtein, A.E., Kazakov, B.P., and Shalimov, A.V., Modeling Complex Air-Gas-Heat Dynamic Processes in a Mine, J. Min. Sci., 2008, vol. 44, no. 6, pp. 616–621.

  5. Levin, L.Yu., Semin, M.A., Klyukin, Yu.A., and Nakaryakov, E.V., Study of Aero- and Thermodynamic Processes at the Initial Stage of Through Ventilation in a Mine, Vestn. PNIPU. Geologya, Neftegaz i Gorn. Delo, 2016, vol. 15, no. 21, pp. 367–377. DOI: 10.15593/2224-9923/2016.21.9.

  6. Cherdantsev, S.V., Li, H.U., Filatov, Yu.M., Botvenko, D.V., Shlapakov, P.A., and Kolykhalov, V.V., Combustion of Fine Dispersed Dust-Gas-Air Mixtures in Underground Workings, J. Min. Sci., 2018, vol. 54, no. 2, pp. 339–346.

  7. Kazakov, B.P., Shalimov, A.V., Semin, M.A., Grishin, E.L., and Trushkova, N.A., Convective Stratification of Air Flows along the Section of Mine Workings, Its Role in the Formation of Fire Heat Depressions and Influence on Ventilation Stability, Gornyi Zhurnal,2014, no. 12, pp. 105–109.

  8. Gershuni, G.Z., Zhukhovitsky, E.M., and Nepomnyashchiy, A.A.,Ustoichivost’ konvektivnykh techenii (Convection Flow Stability), Moscow: Nauka, 1989.

  9. Semin, M.A. and Levin, L.Y., Stability of Air Flows in Mine Ventilation Networks, Process Safety and Environmental Protection: Transactions of the Institution of Chemical Engineers, Part B, 2019, vol. 124, pp. 167–171.

  10. Levin, L.Yu., Paleev, D.Yu., and Semin, M.A., Calculation of Air Flow Stability in the Workings of Mine Ventilation Networks Using Heat Depression Factor, Vestn. Nauch. Tsentra po Bezop. Rabot Ugol. Prom., 2020, no. 1, pp. 81–85.

  11. Smith, M.K., The Nonlinear Stability of Dynamic Thermocapillary Liquid Layers, J. Fluid. Mech., 1988, vol. 194, pp. 391–415.

  12. Kuo, H.P. and Korpela, S.A., Stability and Finite Amplitude Natural Convection in a Shallow Cavity with Insulated Top and Bottom and Heated from a Side, Phys. Fluids, 1988, vol. 31, no. 1, pp. 33–42.

  13. Kafarov, V.V., Osnovy massoperedachi (Foundations of Mass Transfer), Moscow: Vysshaya shkola, 1972.

  14. Birikh, R.V., About Thermocapillary Convection in Horizontal Liquid Layer, Prikl. Mekh. Tekh. Fiz., 1974, no. 5, pp. 145–147.

  15. Hart, J.E., Stability of Thin Non-Rotating Hadley Circulation,J. of the Atmospheric Sci., 1972, vol. 29, no. 5, pp. 687–697.

  16. Medvedev, B.I. and Pochtarenko, N.S., Determination of Unsteady Heat Transfer Factor for Mine Workings in Case of Underground Fire,Mining Mineral Deposits: Republican Interbranch Sci. Tech. Collection, 1972, issue 30, pp. 102–108.

  17. Voropaev, A.F., Teoriya teploobmena rudnichnogo vozdukha i gornykh porod v glubokikh shakhtakh (The Theory of Heat Transfer of Mine Air and Rocks in Deep Mines), Moscow: Nedra, 1966.

  18. Gendler, S.G., A Method for Determining Heat Transfer Coefficient in Mine Workings, Promyshl. Teplotekhnika, 1986, vol. 8, no. 3, pp. 44–47.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shalimov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 6, pp. 179–185. https://doi.org/10.15372/FTPRPI20200616.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazakov, B.P., Shalimov, A.V., Grishin, E.L. et al. ESTIMATION OF FIRE-RELATED PARAMETERS IN TUNNELS FROM ANALYTICAL MODELING OF WARM ADVECTION. J Min Sci 56, 1040–1045 (2020). https://doi.org/10.1134/S1062739120060162

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120060162

Keywords

Navigation